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1 INTRODUCTION

The ray method and its extensions have recently found many applications
in the numerical modelling and interpretation of seismic wavefields in
complex two- and three-dimensional structures. The basic and numeri-
cally most time-consuming step in the application of the ray method
consists in the computation of rays. Ray tracing plays an important role
not only in the ray method itself but also in its more sophisticated
extensions. In standard ray tracing only the ray trajectory, travel times
and slowness vectors along the ray are determined. The components of
the slowness vector also represent the first partial derivatives of the
travel-time field with respect to spatial coordinates. All these quantities
are very important in certain seismological applications, but are not
sufficient to solve many other seismological problems.

It is, however, possible to slightly extend the ray-tracing algorithm and
to evaluate many other quantities of great seismological importance along
the ray (both in the numerical modelling of seismic wavefields and in the
solution of inverse problems). Among other things, the ray propagator
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matrix can be computed by means of so-called dynamic ray tracing. If the
ray propagator matrix is known then many important seismological
problems in the vicinity of the evaluated ray may be solved analytically,
without additional numerical ray tracing. It is also not difficult to evaluate
several other quantities along the ray; these can then be used for a simple
computation of the ray amplitudes.

In this chapter, we propose and describe in detail an algorithm for
complete ray tracing. Complete ray tracing consists of (a) standard ray
tracing, (b) dynamic ray tracing (computation of the ray propagator
matrix) and (c) evaluation of the components of the reduced vectorial
complex-valued amplitudes. The algorithm for complete ray tracing is, of
course, more involved than the algorithm for standard ray tracing, but
numerically complete ray tracing is not much more time-consuming than
ray tracing itself. Complete ray tracing considerably extends the pos-
sibilities and applicability of standard ray tracing and is sure to find an
important place in most program packages designed for the numerical
modelling of high-frequency (HF) seismic body wavefields in complex
structures and for the solution of seismic inverse problems.

In the algorithm for complete ray tracing, a three-dimensional (3D)
laterally varying isotropic block structure, specified in an arbitrary
curvilinear coordinate system, is considered. The description of the
model is rather general, and in principle it follows the proposals of
Gjgystdal et al. (1985). The proposed algorithms allow us to consider
virtually any type of seismic HF body wave propagating in such a
medium.

The algorithms described in this chapter are not always simple and
straightforward. It would, however, increase the length of the chapter
inordinately to try to derive here all the required equations and to
explain all steps in the algorithm from the seismological point of view.
The most complete and consistent theory of complete ray tracing in
general 3D layered media can be found in Cerveny (1985a). In the latter
work Cartesian coordinates are used, but the algorithms proposed here
are written for an arbitrary curvilinear coordinate system. For this
reason, all the equations required in the algorithms are presented in
complete form, even though their derivations are not given.

For specific seismological problems, it would be computationally more
efficient to use some simplified algorithms. This chapter considers only
the most general case; simplifications for special cases are left to the
reader.

The structure of the algorithm for complete ray tracing proposed here
is as follows. The full problem of complete ray tracing is divided into
several, more or less independent algorithms. This chapter consists of a
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detailed description of these algorithms. The system of algorithms is full
and sufficient for the complete ray tracing of a single ray in 3D structures.
The results of complete ray tracing are assumed to be stored in output
files, which may be used later in various problems of seismological
importance.

In the derivation of the algorithm for complete ray tracing presented
here we have profited a great deal from our long experience with
numerical modelling of HF seismic wavefields in complex 2D and 3D
structures and with 2D and 3D seismic-ray packages. This has allowed us
to propose some more general and more efficient algorithms and a more
convenient structure of the whole program. This chapter describes
algorithms for such a new program.

In the proposed algorithm only a single ray of a selected elementary
wave, specified by proper initial conditions, is considered. The two-point
ray tracing problem is discussed only briefly, and not in full generality,
for paraxial rays only. The results of complete ray tracing offer the
possibility of solving the two-point ray-tracing problem for paraxial rays
analytically (see Section 7.12). The general solution of the two-point
ray-tracing problem is not included in the complete ray-tracing algorithm,
even though the results of complete ray tracing may be useful in this
problem. Likewise, the results of complete ray tracing are of basic
importance in the computation of synthetic seismograms, synthetic
frequency responses, elastodynamic Green functions etc. Such computa-
tions, however, require consideration of rays of various elementary
waves. Thus, to perform them the user must supply his or her own
routine in which the complete ray-tracing routines will be used succes-
sively for individual rays of the elementary waves. For the reader’s
convenience, the full equations for such computations are given in
Sections 7.20-7.22.

In complete ray tracing only standard (zeroth-order) ray approxima-
tions are used to evaluate the amplitudes. Complete ray tracing,
however, also yields quantities that are very useful and important in the
evaluation of HF seismic wavefields in singular regions (vicinity of
caustics, critical regions etc.) and in the evaluation of various diffracted
waves. Such computations may be performed by programs not described
here, but involving the results of complete ray tracing. Similarly,
complete ray tracing is a basic routine in the evaluation of Gaussian
beams and in the computation of HF seismic body wavefields by
summation of Gaussian beams, by the extended WKBJ method, by the
Maslov method, and so on. A detailed treatment of this subject is beyond
the scope of this chapter.

Most equations in this chapter are written in component notation.



92 V. Cerveny et al.

Capital-letter indices (I, J, K, A, B, . . .) take values 1 and 2, lower-case
indices (i, j, k, a, b, . . .) take values 1, 2, 3, and Greek lower-case indices
(a, B, v, .. .) take values 1,2, 3, 4. The Einstein summation convention
is used, with respect to both repeated subscripts and superscripts.

Together with component notation, matrix notation is also used.
Matrices are denoted by boldface sans serif letters. In order to distinguish
between 2 X 2 and 3 X 3 matrices, the latter are denoted with a circumflex
above the letter. If the same boldface letter is used for 22 and 3 X 3
matrices with and without the circumflex (e.g. M and M) then the matrix
without the circumflex (M) is the 2 X 2 upper left-hand minor of the 3 x 3
matrix with a circumflex (M). Thus M,; are components of M, and M;
those of M.

2 COORDINATE SYSTEM
2.1 Metric tensor and Christoffel symbols

We consider general right-handed curvilinear coordinates (x!, x%, x°).
The local properties of the coordinate system are described by the
covariant components G; = G;(x*) or by the contravariant components
G"=GY(x*), i,j, k=1, 2, 3, of the metric tensor and by the Christoffel
symbols

Ii=3G"(Gu; + Gui— Gy). 2.1)

The metric tensor is symmetric and generally has six independent
components. The covariant G; and contravariant G/ components of the
metric tensor are related by

GGy = &%,
where the mixed co- and contravariant Kronecker delta 6} is equal to 1

for i =j and 0 otherwise. The square of the infinitesimal length ds can be
expressed in terms of the metric tensor as follows:

ds2 = Gij dxi dx"
There are generally 18 independent Christoffel symbols.

The routine designed for the determination of the metric tensor and of
Christoffel symbols at any point is here called METRIC.
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2.2 Examples of the most important coordinate systems

2.2.1 Cartesian coordinate system
In Cartesian coordinates,
G; = 0y, GY=6Y, (2.2)
rs=o. (2.3)

Here the covariant and contravariant forms of the Kronecker delta §;
and 6” have the same numerical values as &; above.

2.2.2 Spherical polar coordinate system

We introduce the spherical polar coordinates (x?, x% x*)= (%, A, r) as
follows: ¢ is the colatitude (positive southwards), 0<d=<m, A4 is the
longitude (positive eastwards) (0<A<2m) and r=0 is the radial
distance. Then the metric tensor reads

r’ 0 0 r-2 0 0
G;=|0 Psin®¢ 0|, Gi=| 0 r?sin?¢ 0| (24)
0 0 1 0 0 1
The Christoffel symbols are
[0 0 r 0 cotd 0
rk={ 0 —sindcosd 0 |, Iz=|cotd 0 r'}
| 0 0 0o ' 0
- > (2.5)
-r 0 0
ry=| 0 -—rsin’¢ 0|
Lo 0 0 )

It is more common to use the spherical polar coordinates (x’, %2 x}) =
(r, 9, A). Our choice of (x', x?, x°) = (8, A, r) is more suitable if we wish
to describe interfaces in the form x* =f(x?, x?).

2.2.3 Geographic spherical coordinate system

We introduce the geographic spherical coordinates (x', x%, x°) = (4, 8, r)
as follows: A is the longitude (positive eastwards) (0 <A <2m), & is the
latitude (positive northwards) (—3n<®#=<in) and r=0 is the radial
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distance. Then the metric tensor reads

r’cos?® 0 0 r2cos?% 0 O
G,=| o ro| o= 0 2 0| @6
0 01 0 0 1

The Christoffel symbols are

[ o —tan @ r7! sindcosd® 0 0 | )
ri=| —tan® 0 0| Ii= 0 0 r |

r1 0 0 0 rt0 L 2.7)

[ —rcos’® 0 0 '
ri= 0 -r 0.

Lo 00 )

2.2.4 Other coordinate systems

Instead of the above coordinate systems, any other system may be used.
For instance, if we consider the ellipticity of the Earth then ellipsoidal
coordinates may be used. It is usually straightforward to write the metric
tensor for other coordinate systems.

3 MODEL OF THE MEDIUM
3.1 The model

The model M is defined inside a volume of space,
M: xig<xsxi, (i=1,2,73), 3.1

by functions specifying the distribution of the parameters of the medium.
The coordinate surfaces x’=x’;, and x'=x... are boundaries of the
model. The parameters of the medium are, for example, P- and S-wave
velocities, vp, vs, density p, loss factors Qp', Qs!, or some powers of
these quantities. In this way, the velocity distribution may be specified by
velocity values, by values of the square of the velocity, by values of
slowness, by values of quadratic slowness, etc. Likewise, instead of loss
factors, their reciprocal values Qp and Qyg, called quality factors, may be
considered. The parameters of the medium must be smooth functions of
the coordinates inside the model, where ‘‘smooth” means that the
parameters and their first and second partial derivatives must be
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continuous. The smoothness of their distribution may be violated at a
finite set of interfaces across which the parameters or their first or second
partial derivatives may be discontinuous.

We consider models in which every such interface may be covered by a
finite number of smooth surfaces 2: f(x') = 0 with the following property:
the functions f(x’) are defined and are smooth in the whole M i.e. f (xH
and their first and second derivatives are continuous everywhere in M.
The surfaces may intersect each other. They may cross the whole model
and intersect the boundaries of the model; they may also form closed
surfaces (e.g. of ellipsoidal form) inside the model M. Each surface
divides the whole model into two parts, the positive part, in which
f(x")>0, and the negative part, in which f(x') <0. Accordingly, the side
of the surface that faces the positive part of the model is called the
positive side of the surface =, the other one being the negative side of the
surface =. The smooth surfaces = may be indexed in ascending order by
integers, starting from 1.

As in Gjgystdal et al. (1985), we construct the model from two types of
blocks formed by smooth surfaces X: simple blocks (SB), which are the
“building bricks” of our model and have no physical meaning, and
complex blocks (CB), which represent the physical units of the model.
We distinguish between material blocks, in which the density is always
non-zero and positive, and free-space blocks, in which the density is
identically zero. :

A simple block (SB) is defined by two finite sets F* and F~ of surfaces
f(x)=0. A point x' lies within the block if and only if

fxH>0 foranyfeF*} 3.2)

f(x)<0 foranyfeF~. .
The simple block is an intersection of the positive parts of the model
corresponding to the surfaces from F* and the negative parts of the
model corresponding to F~ (see Gjgystdal et al., 1985). An example is
shown in Fig. 1 (see Section 3.4). Only parts of the surfaces 2 may be
boundaries of ‘a block—the remaining parts being only fictitious exten-
sions of the boundary. Boundaries of some simple blocks may also be
partially formed by parts of the boundaries of the model. Note that a
simple block may be formed by several separated regions, not only by
one connected region.

The division of the model into simple blocks is not unique. The SBs
need not form a disjoint system, i.e. a point of the model may be situated
in several SBs. SBs may be indexed in ascending order by positive
integers, starting from 1. It is reasonable to index only the material
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blocks, and leave the free-space blocks without indices. In this way, the
blocks without indices may be immediately identified as free spaces
without checking whether the density is zero or non-zero.

The simple block concept does not allow consideration of blocks in
which the fictitious extensions of boundaries of the block intrude into the
block (see Fig. 2 in Section 3.4). This means that one “physical” block
of the model may be simulated by several simple blocks. In order to
avoid this artificial division of the model, which would also complicate
coding of waves (see Section 4), we introduce complex blocks.

A complex block (CB) is formed as a union of several simple blocks (it
may, of course, also be formed of just one simple block). It may be
defined by a table giving the indices of simple blocks that should be
included in the complex block. While the SBs need not form a disjoint
system, the CBs must form one. Any point of the model must be situated
in just one CB. The boundaries of CBs, which may also be called
interfaces, are formed by boundaries of SBs. The CBs may be indexed by
positive indices, starting from 1. The system of indexing the blocks may
be arbitrary, but some systems may render computations more effective.
The material complex blocks must contain only material SBs. The
complex block formed of free-space SBs is called the free-space complex
block.

Note that in the following sections we shall introduce additional
surfaces, which have the same properties and may be specified in the
same way as the smooth surfaces 2 described above. However, they have
a different meaning. The purpose of one set of these surfaces is to store
all the quantities obtained by complete ray tracing; otherwise they are
fully transparent, i.e. they have no effect on the ray tracing (see Section
5.5.2). The other set contains surfaces at which the complete ray tracing
is to terminate (see Section 5.4, case (f)).

3.2 The data and routines specifying the model

The specification of data defined in Section 3.2.1 and routines defining
the surfaces f(x') =0 and the parameters of the medium (see Sections
3.2.2 and 3.2.3) fully determine the model.

3.2.1 Data specifying the model

(a) Indices NEXPV, NEXPQ specifying exponents of the power of
velocities (NEXPV) and loss-factors (NEXPQ) in input data. For
example, unit indices NEXPV and NEXPQ indicate that para-
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meters of the medium are velocities and loss-factors, indices equal
to —1 indicate reciprocal values of these quantities, i.e. slowness
and quality factors.

(b) The boundaries of the model X1, Xiax, XZin, XZiaxs X ins X onax-

(c) The number NSRFC of smooth surfaces X in the model. The
surfaces are indexed sequentially by positive integers, from 1 to
NSRFC.

(d) The number NSB of material simple blocks in the model. The
blocks are indexed sequentially by positive integers ISB, from 1 to
NSB. The free-space blocks are not indexed.

(e) For each simple block with index ISB, the indices of the surfaces
forming the set Fisp and the indices of the surfaces forming the set
Fisp. The indices of surfaces from Fisp are stored with positive
signs; the indices of surfaces from Fisg are stored with negative
signs. The indices may be specified in an arbitrary order.

(f) The number NCB of material complex blocks in the model. The
blocks are indexed sequentially by positive integers ICB, from 1 to
NCB. The free-space blocks are not indexed.

(g) For each complex block, the indices of simple blocks forming the
complex block. The indices may be specified in an arbitrary order.

3.2.2 Specification of smooth surfaces

The functions f(x') may be specified with the use of simple analytic
expressions, interpolation or approximation of values given at discrete
points, and so on. The coefficients of these functions may be prepared in
the user-defined routine SRFC1, in which the input data concerning the
surfaces f(x') =0 may also be read in. The functional values as well as
the first and second partial derivatives of the functions f(x’) at a specified
point may be obtained by a user-defined routine called SRFC2 here.

3.2.3 Specification of the parameters of the medium

The distribution of the parameters of the medium in each complex block
may be specified by simple analytic expressions, by interpolation or
approximation of values given at discrete points, etc. The parameters
may be either P- and S-wave velocities, density and loss-factors, or
their powers. The distribution of any of these parameters may also be
expressed in terms of the distribution of another parameter, for example,
vg=0.57Tvp or p =1.7 + 0.2vup, where vp, vg and p are P and S velocities
and density. The coefficients of these functions may be prepared in a
user-defined routine called PARMI1 here, in which the input data
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concerning the distribution of individual parameters within each complex
block may be read in. The functional values as well as the first and
second partial derivatives of these functions may be obtained in a
user-defined routine PARM2.

3.3 Auxiliary procedures

For complete ray tracing, some auxiliary procedures specifying the
position of a point with respect to simple and complex blocks and smooth
surfaces, or transforming the specified parameters of medium into
velocities, density and loss factors, may be useful. The auxiliary
procedures do not specify the model, they are only service procedures for
complete ray tracing.

3.3.1 Determination of the index of a block

For the determination of the index of a simple and a complex block, in
which a specified point (e.g. point source) is situated, a routine, called
BLOCK here, may be used. This routine may also be used to determine
the index of a block touching a specified block at a point situated on the
boundary of the specified block (the situation that may arise when a ray
impinges on a boundary of a block). Another function of the routine may
be to determine the index of a surface bounding a block and separating
the block from the given point (surface f(x‘) = 0 separates sets A and B if
F&Hf(y) <0 for any x' € A, y' € B).

3.3.2 Transformation of the parameters of the medium

The routine transforming the values of the parameters of the medium
into the velocity and loss factor of the corresponding type of wave is
called VELOC here.

3.4 Examples

We present several examples of how to build models for complete ray
tracing. We present cross-sections of 3D models specified in Cartesian
coordinates. Of course, they may also be interpreted as 2D models.
Individual figures always contain a picture of the model and a picture (or
pictures) of its representation in terms of simple blocks. The parts of the
model below smooth surfaces are considered as positive, those above
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SB1: 1,-2,-3

Fig. 1 (a) Simple block. (b) Its representation by three surfaces indexed 1, 2, 3.

them as negative parts of the model. In the case of a closed surface the
positive part of the model is situated outside the closed surface. The
tables attached to the figures specify the indices of surfaces belonging to
the sets Fisp (positive numbers) and Figp (absolute values of negative
numbers) for each simple block ISB.

To better understand the individual figures of the models shown later
in this section, let us first show a schematic picture of a simple block (see
Fig. 1). Similarly, Fig. 2 shows that one physical (complex) block may be
simulated by several simple blocks in various ways.

Example 1: Layered structure

Figure 3(a) shows a model of a simple layered structure. The layers are
separated by non-intersecting smooth interfaces. The representation of
such a structure in terms of simple blocks (see Fig. 3b) is very simple.
Each interface is represented by one smooth surface 2, each layer by one
simple block. Complex blocks are in this case identical with the simple
blocks.

Example 2: Isolated body A

Figure 4(a) shows a layered structure containing an isolated body. The
representation of the model in terms of simple blocks for two different
systems of indexing surfaces and SBs is shown in Figs 4(b,c). It is again
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(a)

(b)
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(c)
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SB1: 1,-2,-3 $B2: 2,-3
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SB1
3
SB1: 1-3 sSB2: -1,2,-3
(e)
1 - 2
SB1
SB1
SB2
3
SB1: 1,-3 SB2: 2,-3

Fig. 2 (a) Complex block. (b) Three surfaces 1, 2, 3 covering the boundary of
(a). (c,d, e) Construction of the complex block (a) using two simple blocks in
several ways.
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(a) Free space
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1
SB1 -

cB1 2

sB2 cp2

\,_,_______a———_—.s

SB4 cB4
SB1:1,-2 CB1:1
sSB2: 2,-3 cB2: 2
SB3: 3,-4 CB3:3
SB4: 4 CB4:4

Fig. 3 (a) Model of a simple layered structure. (b) Its computer representation.

very simple. Each interface is represented by one smooth surface,
surfaces 2 in Fig. 4(b) and 1 in Fig. 4(c) being closed surfaces. An
isolated body represents one simple block, the remaining part of the
layer another one. Complex blocks are again identical with simple blocks.
In both pictures, (b) and (c), complex blocks are indexed from the top to
the bottom.

Example 3: Isolated body B

Figure 5(a) shows a model of a layered structure containing an isolated
body with edges. Possible representations of the model in terms of simple
blocks are shown in Figs 5(b,c). This example shows that: (i) the division
of models into simple blocks may be non-unique; (ii) although the region
represented by simple blocks 1 and 3 is one physical unit (see Fig. 5a), it
cannot be represented by a single simple block (the region contains
points that are situated both in positive and negative parts of the model
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(a)
Free space
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Free space
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SB3 = CB3

$B1:1,2,-3 CB1:1

sB2: -2 CB2:2

sSB3:3 CB3:3
© Free space

3 —_— ]
—
! GB3 =CB2 82 = CB1

—

SB1= CB3
SB1:2 cB1:2
sB2:1,-2,3 CcB2:3
sB3: -1 CcB3:1

Fig. 4 (a) Model of a smooth isolated body. (b,c) Its two
representations.

computer
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Free space

SB1: -1,2,-3 CB1:13
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SB3:1,2,-4 CB3:4
SB4:4

(c)
Free space

SB1
N
sB2
3 i —\
4 SB3
—
sB4
SB1: 2,-3,-4 CB1:1,3
sB2: -1,3 cB2:2
SB3:1,3,-4 cB3:4
SB4:4
(d)
Free space

.——ﬂ“_w

B

cB3

Fig. 5 (a) Model of an isolated body with edges. (b,c) Its two computer
representations in terms of simple blocks. The complex blocks in the two
representations are equivalent—see (d).
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(a)
Free space

(b)

Free space
1
SB1
2
sB3 \ sB2
3 \
sB5 \ Se4
K SB6
SB1:1,-2,6 6
SB2:1,-4,-6
SB3:2,-3,6 SB5: 3,6
SB4:4,-5,-6 SB6:5,-6
(c)
Free space
1 %f
2 1
cB2 \ cB
\
cB3
cB4 \
6\ CcB5
CB1:1,2
cB2:3 CcB4:5
CB3:4 CB5: 6

Fig. 6 (a) Model of a fracture structure with a sedimentary cover. (b) Its
computer representation in terms of simple blocks. (c) Its computer repre-
sentation in terms of complex blocks.



I1.1. Complete Ray Tracing in 3D Structures 105

with respect to the smooth surface 1 or 3—see also Fig. 2). The simple
blocks 1 and 3, however, may be united to form a complex block of the
same physical properties (see Fig. 5d). Complex blocks 2 and 3 are
identical with the simple blocks.

Example 4: Fracture structure

Figure 6(a) shows a model of a simple fracture structure with a
sedimentary cover. Its representation in terms of simple blocks is shown
in Fig. 6(b). Simple blocks 1 and 2 may be united to form a complex
block, the other complex blocks are identical with simple blocks.

4 CODES FOR ELEMENTARY WAVES

We consider ordinary seismic body waves, such as refracted, primarily or
multiply reflected, possibly converted waves. In general, incidence of a
wave at an interface (boundary of a complex block) produces four waves,
reflected P and S, and transmitted P and S waves. When performing
complete ray tracing, we must know a priori which of the four generated
waves to follow. This decision must be made at each interface. The
alphanumeric string specifying the behaviour of a ray from its initial point
to its endpoint is a code.

The term elementary wave does not have unique meaning in the
literature. Here we apply the term to that part of the wavefield that is
described by one specific code. Since there may be various types of
codes, there is also a variety of divisions of the wavefield into the
elementary waves.

We introduce the term element of a ray, which has an important
meaning in the construction of codes. By an element of a ray, we denote
that part of the ray that is situated in one complex block between two
successive points of reflection/transmission, or between the initial point
or endpoint of the ray and the closest point of reflection/transmission or
between the initial point and the endpoint of the ray, if the ray is entirely
situated in one complex block.

There are many possible types of codes of elementary waves. Usually
they are given by a finite sequence of non-zero integers. For the
transformation of the code into instructions specifying the behaviour of
the considered elementary wave at the initial points of rays and at ail
points of incidence at interfaces (boundaries of complex blocks), a
routine, called CODE here, should be prepared.
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5 COMPLETE RAY TRACING
5.1 Theory

Complete ray tracing consists of: (a) ray tracing and computation of the
travel time along the ray; (b) determination of the polarization vectors
along the ray; (c) dynamic ray tracing (i.e. computation of the ray
propagator matrix); (d) determination of the vectorial complex-valued
reduced amplitudes.

5.1.1 Ray tracing and travel-time computation

Ray tracing consists in the computation of a ray, i.e. in a step-by-step
evaluation of coordinates of points along the ray. The ray is parametrized
by an independent variable

o=0p+ I yNEXPS 7 = g, + f yNEXPS—1 g, (5.1)
Ty S0

where 7 is the travel time, s is the arclength along the ray and v is the
velocity of the corresponding type of wave. The integer exponent NEXPS
may be specified by a user, NEXPS=0, £1, +2,.... We consider the
ray-tracing system in the form of a system of six first-order ordinary
differential equations:

Ei — UZ_—NEXPSGijp_

do »

) S (5.2)
Di o _, OV )

_(G = ,UZ NEXPS( —v 3 5 + F:'_,('Gﬂpkpl>-

Here x' are the coordinates of a point along the ray, p; are the covariant
components of the slowness vector at the point x', and p; = 8t/dx". For
the metric tensor G7 and the Christoffel symbols I'; see Section 2. At an
interface, the ray is transformed using the Snell law.

The equation
T=1,+ f v NEXPS dg (5.3)

for the real-valued travel time follows from (5.1). The imaginary part of
the complex-valued travel time is defined as

oy = [ Qo) dr= [ @O, (54)

where Q is the relevant quality factor.
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5.1.2 Polarization vectors

Let us consider an arbitrarily selected ray and denote it by €. The
determination of the polarization vectors along the ray £ plays an
important role in complete ray tracing for several reasons. The polariza-
tion vectors must be known if we wish to determine the orientation of the
displacement vector of the wave propagating along £, especially in the
case of S waves. Moreover, the polarization vectors form the vector basis
of the ray-centred coordinate system connected with €. The ray-centred
coordinate system is very useful in many applications, especially in
dynamic ray tracing (see Section 5.1.3).

The orthogonal ray-centred coordinate system was introduced into
seismology by Popov and PSentik (1978a,b). We shall denote the
ray-centred coordinates by (¢', ¢°, ¢> =), where s is the arclength along
the ray 2, and ¢* are the Cartesian coordinates in the plane tangent to
the wavefront at point s =q> on £, with the origin on the ray €. The
vector basis of the ray-centred coordinate system consists of three unit
vectors e;, e,, e; (polarization vectors), where e; is tangent to the ray €2,
and e, and e, are perpendicular to ©. They are introduced in such a way
as to render the ray-centred coordinate system orthogonal. The equation

dH; _ dv v -
=Y NEX*’S[—G—F G"“Hyp: = peG"'Hy 5+ UFika’p,Hm,] (5.5)
holds for the covariant components H;; of the ray-centred basis vector e;,
(¢;); = H;;. This equation simplifies to

dH; 0
d_onl — vl—NExps[gvk G*H,p: + vTﬁlelem/] (5.6)
for vectors e; perpendicular to the ray €. For the unit vector e; tangent
to the ray Q (j =3 in (5.5)),

dx’
Hz=vp; = Gija s (5.7)
and (5.5) is equivalent to the second equation of the ray-tracing system
(5.2). It is sufficient to compute only the covariant components H;,
(i=1, 2, 3) of the vector e;, because e; is determined by (5.7) when the
ray tracing (5.2) is performed, and because e; is always perpendicular to

both e; and es:
HiZ = eijijm mSGannl[det (Grs)]—l/Z. (58)

Here £153= €31 =€312=1, €132= €31 = &3 = —1, & =0 for all other
combinations of ijk. At an interface, the ray-centred coordinate system is
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rotated around the vector perpendicular to the plane of incidence in such
a way that, after the rotation, the vector e, coincides with the tangent to
the ray of the generated wave under consideration.

5.1.3 Dynamic ray tracing. Ray propagator matrix

Dynamic ray tracing consists in the solution of the system of four
first-order linear differential equations along the ray £, for the com-
ponents of a 4 X 1 column matrix W,

M_ 2—NEXPS
=V sw, (5.9)

0 )
S= [—v"3V 0]’

0 and / being zero and identity 2 X 2 matrices, and V a 2 X 2 matrix with

components
3% )
V, = (__ —m2=
D= \oxkax! " Mox™

where

)G"’GL‘H,,HS,. (5.10)

The first two components of W are ray-centred coordinates (¢}, g*) of a
paraxial ray (up to first order in Taylor expansion), and the other two
components of W are the corresponding ray-centred components of the
slowness vector of the paraxial ray.

The dynamic ray-tracing system (5.9) has four linearly independent
solutions. We denote by II(o, 0,) the fundamental 4 x4 matrix of
linearly independent solutions of (5.9) with the initial condition

II(ao, 00) = I

at the initial point o = 0, of the ray. Here /is the 4 X 4 identity matrix.
The fundamental matrix IT(o, 0,) is also called the ray propagator
matrix, or the propagator matrix of the dynamic ray-tracing system. It
satisfies the following relation along the ray:

0 010
00 1

M=%, withZ=| . . o o (5.11)
0 -1 0 0

This is the so-called symplectic property of II. Any solution W(o) of the
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dynamic ray-tracing system (5.9) can be expressed in the form
W(o) = II(o, o,) W(a,). (5.12)

Solutions of the dynamic ray-tracing system (5.9) have found many
important applications in seismology. Let us assume that the computed
ray belongs to a two-parameter system of rays, parametrized by ray
parameters y!, y* Then, the dynamic ray-tracing system can be used to
determine the 2 X 2 matrices @® and P® along the ray, with elements

a 1
o5=[2%]
q1=q2=0

R ayalzt ap? o
Pf= [WL =q2=0=[ ay’ ]q1=qz=o'

Here q’ are the ray-centred coordinates of a paraxial ray specified by ray
parameters y', y% p{? are the relevant ray-centred components of the
slowness vector of the paraxial ray, p{? = 31/3q’. The matrix QR is also
called the matrix of geometrical spreading, |det @%| being the geometri-
cal spreading. It measures the expansion and contraction of the ray tube.
The geometrical spreading is dependent on the parametrization of the
rays.

We introduce the ray coordinates (y', ¥% y*), where y' and y? are the
ray parameters and y° is a parameter along the ray (e.g. the arclength s).
Then the matrix @® may be also interpreted as the transformation matrix
from ray coordinates (y', y?) to the ray-centred coordinates (q', g%)
along the ray Q. Similarly, the matrix P® represents the transformation
matrix from ray coordinates (y', ¥*) to the “phase-space” coordinates
p$®, p$?. The 4 X 2 matrix X®, defined as

QR
XR= [PR], (5.14)
satisfies the dynamic ray-tracing system
de 2-NEXPS
——=v" XK 5.15
i Y S (5.15)
along the ray Q. The solution of (5.15) may be expressed in the form
XR(0) = H(0, 05)X?(0y). (5.16)

If @R and P® are known then we can also determine the 2 X 2 matrix of
the second derivatives of the travel-time field M®(o), with elements

3t
M%= [—] . 5.17
u aql aq.l gi= 200 ( )
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QF, PR and M® are related by
M~ = PR(Q®). (5.18)

The transformation of solutions of the dynamic ray-tracing system across
interfaces is determined by Snell’s law for paraxial rays.

5.1.4 Vectorial reduced amplitudes

Vectorial reduced amplitudes
A; = AR(pv |det QR|)'? (5.19)

are the complex-valued vectorial displacement ray amplitudes AR
(including a phase shift due to caustics) expressed in the ray-centred
coordinate system, multiplied by the square root of the impedance
(product of density p and velocity v) and of the geometrical spreading
|det @®|. The vectorial reduced amplitudes A, are assumed to be unity at
the initial point of a ray. If the initial point is situated at the free surface
or at any internal interface then the conversion coefficients may be
included in A;.

We define the 3 X3 matrix A; composed of the vectorial reduced
amplitude A;; corresponding to the S wave polarized in the direction of
the vector e; at the initial point of the ray, of the vectorial reduced
amplitude A;, corresponding to the S wave polarized in the direction of e,
at the initial point, and of the vectorial reduced amplitude A,; cor-
responding to the P wave at the initial point. The components of the
vectorial reduced amplitudes A, are expressed in the ray-centred coordin-
ate system. They are constant along the elements of a ray inside
individual blocks, except at caustics, where they must be multiplied by —i
or —1, according to the type of caustic. At interfaces, the vectorial
reduced amplitudes are transformed by means of reduced
reflection/transmission (R/T) coefficients

RE= R[ﬁf; Icos &1]1’2

5.20
PV [cos «| ( )

where R are plane-wave displacement reflection/transmission coefficients.
Here the quantities with a tilde correspond to the relevant R/T wave,
those without tilde to the incident wave; in both cases at the point of
incidence. o and & are the angles of incidence and of R/T respectively.
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5.2 Quantities computed along a ray

5.2.1 Basic quantities computed along a ray

Complete ray tracing is performed to compute the following basic
quantities at selected points along a ray:

Y=< travel time;

Y(2)=t™=14¢* imaginary part of the complex-valued
travel time;

Y(3)=x'
Y(4)=x? coordinates of points along the ray;

y
Y5)=x*
Y(6)=p:
Y(7)=p: covariant components of the slowness vector,
Y(8)=ps
;(82)): =H1111 covariant components of the polarization
Y(i1) = HZI vector e;, see (5.6) forJ =1;

= 413

Y(12) Y(16) Y(20) Y(24) nm, M, I, IL,
Y(13) Y(17) Y1) Y(25) _ In,, I I,z I,
Y(14) Y(18)‘ Y(22) Y(26) Iy, Iy II; I |
Y(15) Y(19) Y(23) Y(27) I, My, Hy Iy

the matrix of fundamental solutions of the
dynamic ray tracing system (5.9) (ray propagator
matrix);

Y(28),...,Y(NY), where NY=27+NAMPL.

There are NAMPL real quantities representing complex-valued
vectorial reduced amplitudes. The vectorial reduced amplitudes
are specified in the ray-centred coordinate system. Here NAMPL
may be either 2, 4 or 8, in the following alternative cases:

(a;) Case of a P wave at the initial point of the ray, and of a P
wave at the point under consideration on the ray. Then

NAMPL =2, and

Y(28) =Re A33, Y(29) =Im A33.
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(a,) Case of a P wave at the initial point of the ray, and of an S
wave at the point under consideration on the ray. Then
NAMPL =4, and

Y(28) =Re A13J Y(29) = Im A13,
Y(30)=Re Ay,  Y(31)=Im Ay

(b;) Case of an S wave at the initial point of the ray, and of a P
wave at the point under consideration on the ray. Then
NAMPL =4, and

Y(ZS) =Re A31; Y(29) =1Im A31,
Y(30) = Re A32) Y(31) =Im A32.

(b,) Case of an S wave at the initial point of the ray, and of an S
wave at the point under consideration on the ray. Then
NAMPL = 8§, and

Y(28)=Re A;;, Y(29)=ImA,,
Y(30)=Re A,;, Y(31)=ImA,,
Y(32)=Re A, Y(33)=ImA,,
Y(34)=Re Ay,  Y(35)=ImA,.

5.2.2 Auxiliary quantities computed along a ray

Knowledge of the basic quantities, described above, at a point of the ray
Q is not sufficient for continuation of complete ray tracing from the
point. In this section we introduce some quantities that are necessary or
useful for complete ray tracing, together with some quantities containing
some information about ray tracing.

YY(D)=o0 independent variable along the ray.

YY(2) = UEBRAY upper error bound for ray tracing,
which is equal to the input value UEB
at the initial point of the ray (see
Section 5.6j). It is always doubled
when the numerical integration re-
quires more than NHLF bisections of
the initial step STEP (see Section
5.6g). UEBRAY >UEB at the end-
point of the ray indicates a decreased
accuracy of computation.
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YY(3) = ERRPP
YY(4) = ERRPH
YY(5) = ERRHH

IY(1) =NY =27 + NAMPL

IY(2) = KODIND

IY(3) = ICBO
IY(4) = ISB1
1Y(5) = ICB1
1Y(6) = ISRF
TY(7) = ISB2

deviations (in absolute values) of the
two computed basis vectors of the
ray-centred coordinate system from
the conditions of orthonormality (see
Sections 5.8.2d and 5.8.3i), accumu-
lated along the ray. Any of them may
be compared with the corresponding
specified limit UEBPP, UEBPH or
UEBHH (see Section 5.6k) at the
endpoint of the ray.

number of basic quantities describing
the point of a ray (see Section 5.2.1).

position in the code corresponding to
the considered element of a ray; its
value is determined by subroutine
CODE (see Section 4).

index of the complex block from
which the ray entered the complex
block in which the computed element
of the ray is situated; 1Y(3) = 0 before
leaving the complex block in which
the initial point of the ray is situated.

index of the simple block containing
the computed element of the ray.

index of the complex block containing
the computed element of the ray,
supplemented by sign + for a P wave
and sign — for an S wave.

index of the surface at which the
endpoint of the computed element of
the ray is situated; undefined inside
the complex block, defined only at
the endpoint of the element of the
ray.

index of the simple block touching the
complex block ICB1 from the other
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IY(8) = ICB2
IY(9) = IFCT

1Y(10) =IOUTP

IY(11) = ITRANS

IY(12) = KMAH

V. Cerveny et al.

side of the surface ISRF at the end-
point of the computed element of the
ray; ISB2 =0 for a free space on the
other side of ISRF; undefined inside
the complex block, defined only at
the endpoint of the element of the
ray.

index of the complex block touching
the complex block ICB1 from the
other side of the surface ISRF at the
endpoint of the computed element of
the ray; ICB2 =0 for a free space on
the other side of ISRF; undefined
inside the complex block, defined
only at the endpoint of the element of
the ray.

number of invocations of subroutine
FCT evaluating the right-hand sides
of the ordinary differential equations
along the computed part of the ray.

number of successful steps of the
numerical integration along the ray.

number of transformations at an
interface.

number of caustic points along the ray
(the index of the ray trajectory).

5.2.3 Quantities for the identification of caustics

Computation of the reduced vectorial amplitudes requires knowledge of
the position of caustics on the computed ray. The position of a caustic is
not a property of a single ray, but a property of the rayfield. It depends
on the mutual position of paraxial rays with respect to the computed ray.
The mutual position can be determined if the 2 X 2 matrix

MINIT = MR(G())
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of the second derivatives of the travel-time field at the initial point ¢ = ¢,
of the computed ray is known. The matrix M™'T may be specified in
terms of the matrices @™ = @Q%(0,) and P™'T = PR(0,) (see Section
5.1.3) as

MINIT — PINIT( QINIT) -1 .

5.3 Auxiliary surfaces

In addition to surfaces 1, ..., NSRFC covering structural interfaces and
described in Section 3, some other (auxiliary) surfaces may be useful
when we perform complete ray tracing. The surfaces may be used for the
limitation of a computational volume for complete ray tracing (see
Section 5.4) or for storing the computed quantities (see Section 5.5).

Note that the computational volume may be introduced as a subvolume
of the model M under consideration. The actual computations are then
performed only in the computational volume, not in the whole of M, and
are terminated at the boundaries of the computational volume. This
considerably increases the efficiency of computations performed in
various regions of the model M.

The auxiliary surfaces are indexed by integers from NSRFC+1 to
NSRFC + NSRFCA, where NSRFCA is the number of auxiliary sur-
faces. The auxiliary surfaces may be described in the same way as the
surfaces covering structural interfaces, the same routine SRFC1 may be
used for reading input data and for the preparation of the necessary
coefficients, and the same routine SRFC2 may be used for their
evaluation.

The auxiliary surfaces are specified by their number NSRFCA, by the
input data (read in by the subroutine SRFC1) and by the routine SRFC2.

5.4 Termination of tracing a ray

Computation of the ray 2 is terminated in the following cases:

(a) The computed ray satisfies the whole code, i.e. the last computed
element of the ray corresponds to the last element in the code.

(b) At the point of incidence at an interface the ray cannot continue to
satisfy the code. For example (i) the point of incidence may be
situated at a different surface than that specified by the code; (ii)
the next element of the ray may be required by the code to be
situated in a block that does not touch the point of incidence (for
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example, the code may require the transmission into a block that is
not in contact with the block containing an incident ray at the
point of incidence); (iii) transmission may be required by the code
at a free surface; (iv) the ray of the required reflected or
transmitted wave may not be real-valued (e.g. overcritical trans-
mission); or (v) an S wave in a liquid block may be required by the
code.

Reflection or type conversion at a fictitious part of the interface is
required by the code. The amplitudes of reflected or converted
waves are zero in this case. In principle, each zero
reflection/transmission coefficient could be a reason for the ter-
mination of the computation of the ray.

The travel time Y(1) is greater than a specified time limit.

The ray intersects any of the six coordinate planes (x'=xiqn,
x' = x\ax) limiting the computational volume for complete ray
tracing. The computational volume should not exceed the volume
M in which the model is defined (see Section 3.1). Note that in
addition to the six coordinate planes, auxiliary surfaces or model
surfaces may also be used to limit the computational volume; see
(.

The ray intersects any surface of the given set Foyp of surfaces
limiting the computational volume for complete ray tracing. The
surfaces may be either surfaces that cover structural interfaces (see
Section 3) or the auxiliary surfaces introduced in Section 5.3. The
set Fgnp Of surfaces is determined if the indices of the surfaces
from Fenp are specified and if the subroutine SRFC2 is activated.

5.5 Storage of computed quantities

The quantities computed along the rays and described in Section 5.2 may
be stored in some files.

5.5.1

Storage of quantities along a ray

The quantities are stored along the whole computed ray with constant
step STORE of the independent variable. The quantities at the points of
intersection of the ray with interfaces are also stored. They may be, for
instance, of use in plotting rays.
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5.5.2 Storage of quantities at specified surfaces

The quantities are stored at the points of intersection of a ray with any
surface from a given set Fyrore. The surfaces may be as follows.

(a) Surfaces 1, ..., NSRFC covering structural interfaces. The quan-
tities are only stored along those parts of the surfaces that form the
boundaries of complex blocks. Since the quantities are discon-
tinuous across interfaces, we must specify, for each surface, its
positive or negative side on which the quantities are to be stored.
The sign denoting the positive or negative side may be included in
the index of the surface.

(b) Auxiliary surfaces NSRFC+1,...,NSRFC+ NSRFCA. The
quantities are stored along the whole of the surfaces. There is no
reason to distinguish between their positive and negative sides.

(c) Boundaries of the computational volume. The coordinate planes
(surfaces) forming the boundaries of the computational vol-
ume may be indexed as follows: 101 for x'— xyn=0, 102 for
x'—xax =0, 103 for x> —x%gn=0, 104 for x> — x4ax =0, 105
for x> — x3un =0, and 106 for x* — x3ax = 0.

(d) Isochrone 7 — Tyax = 0. The isochrone may be indexed by 107.

For determination of the surfaces for storage, the indices of the
surfaces forming the set Fyrorg must be specified and a subroutine
SRFC2 must be available to evaluate the functions f(x’) that describe the
proper surfaces. Remember that the indices of the surfaces covering
interfaces must be supplemented by a * sign denoting the side of the
surface where the quantities are to be stored.

Each surface used for storage should have its own file with stored
quantities.

5.5.3 Storage of quantities at the endpoints of rays of elementary
waves

Each elementary wave is defined by means of its code (see Section 4).
Left-hand parts of the code usually define some simpler elementary
waves, with a smaller number of elements of their rays. It may be useful
to store quantities corresponding to these simpler elementary waves at
the endpoints of their rays. These quantities may be used in the
computation of other elementary waves, with longer chains of elements,
but with the same initial elements. Their computation may start from the
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stored quantities, without repeating the computation of the initial
elements.

5.5.4 List of stored quantities

In addition to quantities computed along a ray and described in Section
5.2, some quantities describing local properties of the model at points
under consideration along the ray may be useful in further processing of
the results of complete ray tracing. These quantities, which will already
have been evaluated during complete ray tracing, can, in principle, be
recomputed when required. This may, however, be rather time-
consuming. It is therefore reasonable to store these quantities together
with quantities computed along the ray. The additional (local) quantities
to be stored are:

ICB1 index of the complex block in which the point
is situated, including the sign + for a P wave or
— for an S wave;

YL(1)=vp velocity of P waves at the point;
YL(2) = vg velocity of S waves at the point;
YL(33)=p density at the point;

YL(4) = v, = dv/x’
YL(5) = v, = 3u/3x* } velocity derivatives in general coordinates.
YL(6) = vy = dv/dx>

After these local quantities, the quantities Y(1), ..., Y(NY) described in
Section 5.2 are to be stored.

If the quantities are stored at a point of intersection of the ray with a
specified surface, and if the surface coincides with an interface between
blocks (i.e. the surface belongs to the set of NSRFC surfaces covering
interfaces) then the quantities ICB1, YL and Y should be stored not only
once, but either for three waves (incident, reflected P, reflected S) or for
two waves (transmitted P, transmitted S), depending on the side of the
surface where they are stored.

In certain applications, it may also be sufficient to replace the above
three or two sets of quantities by a single set of quantities corresponding
to the incident wave. However, in this case the reduced amplitudes
Y(28), ..., Y(NY) in the ray-centred coordinate system should be re-
placed by reduced amplitudes involving appropriate conversion coefficients,
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expressed in ray-centred coordinates:
(a) P wave at the initial point (6 reals):
YC(1)=Re A,3, YC(2)=ImA,
YC(3)=Re Ay,  YC@)=ImAy;,
YC(5) =Re A, YC(6) = Im Aj;.
(b) S wave at the initial point (12 reals):
YC(1)=Re Ay, YC(2)=Im A,

YC(3) =Re A21) YC(4) =Im AZl)
YC(5)=ReAs,  YC(6)=ImAs,
YC(7) =Re A12, YC(S) =Im A12,

YC(g) =Re A22, YC(lO) =Im A22,
YC(11)=ReAsy,,  YC(12)=ImAs,.

5.6 Data for complete ray tracing

In this section we summarize the input data necessary for the complete
ray tracing (in addition to those discussed in Sections 2, 3, 4 and 6).

(a) The coordinates Xiun, XMax, ¥Mine XMax> XMiNs Xaax, Which
specify the coordinate planes bounding the computational volume,
and the maximum travel time Tyax. The coordinate planes may be
indexed 101, 102, 103, 104, 105, 106. Boundaries of the model (see
Section 3.2.1) may be used as default surfaces for the coordinate
planes bounding the computational volume.

(b) The number NSRFCA of auxiliary surfaces. The surfaces are
indexed sequentially by positive integers, from NSRFC+1 to
NSRFC + NSRFCA.

(c) The indices of end surfaces (model or auxiliary surfaces bounding
the computational volume—see Section 5.4f). The surfaces de-
scribed by data (a) need not be specified in this set of indices. The
indices may be specified in an arbitrary order.

(d) The indices of surfaces for storing computed quantities (see
Section 5.5.2). The indices may be specified in an arbitrary order.
The indices of surfaces 1, ..., NSRFC covering structural inter-
faces should include a sign + or — (see Section 5.5.2a).
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Integer KSTORE specifying whether conversion coefficients are to
be considered.

Exponent NEXPS specifying independent variable along rays—see
(5.1).

(zg) Maximum allowed number NHLF of halvings (bisections) of initial

()

(@)

()

(k)

M

increment of independent variable during numerical integration.

Step STORE of independent variables for storing the computed
quantities along a ray (see Section 5.5.1). For STORE =0 the
quantities are not stored along rays.

Initial increment Ao = STEP of independent variable for numeri-
cal integration.

Upper error bound UEB of travel time per step of numerical
integration. Errors in the coordinates of points along the ray are
approximately transformed to units of travel time and are also
bounded by UEB. The error per step of numerical integration is
automatically kept within the limit UEB if this does not require
more than NHLF bisections of the initial increment STEP. In the
opposite case the upper error bound is 2, 4, 8, . . . times greater for
the computation of the rest of the ray. Thus the computation of
each ray is completed.

The maximum allowed accumulated deviations UEBPP, UEBPH,
UEBHH of the two computed polarization vectors from the
conditions of orthonormality (see Sections 5.8.2d and 5.8.3i). The
accumulated deviations (quantities YY(3), YY(4), YY(5) defined
in Section 5.2.2) may be compared with the specified limits
UEBPP, UEBPH, UEBHH. The maximum accumulated devia-
tions UEBPP, UEBPH, UEBHH are expressed in time units.

The maximum allowed deviation UEBDRT of the matrix II*XIT
from the matrix
0 010
o 0 0 0 1 :
-1 0 0 0
0 -1 00

see (5.11). A deviation of any component may be compared with
the specified limit UEBDRT.
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5.7 Complete ray tracing

We assume the model (Section 3), the input data for complete ray tracing
(Section 5.6) and the code of the elementary wave (Section 4) to be
specified. If the quantities Y(1),...,Y(NY), YY(1),...,YY(5),
IY(1), . ..,IY(12), Q4" and P45" (see Section 5.2) are given then the
complete ray tracing of the ray of the specified elementary wave may
continue from the given point Y(3), Y(4), Y(5).

(a) If the point is situated inside a complex block then computation of
the ray continues as described in Section 5.8, until the endpoint of the
computed element of the ray is reached (the endpoint of the element is
either the endpoint of the ray (see Section 5.4) or the point of
intersection of the ray with the boundary of the complex block).

(b) If the point is the endpoint of the element of the ray, situated at the
boundary of a complex block, then: if the index IY(6)=ISRF of the
surface is specified in the input data for storing the computed quantities
(see Section 5.6d), the proper quantities (see Section 5.5.4) are stored in
the file corresponding to the surface. If the surface is the end surface (see
Section 5.6c) then the computation of the ray is terminated (see Sections
5.4d-f), or else the quantities Y(1),..., Y(NY), YY(1),..., YY(5),
IY(1),...,IY(12) must be transformed across the interface. The code
for the elementary wave specifies whether the ray is to be transmitted or
reflected and whether it has to continue as a P or an S wave.
Transformation of the quantities across the interface is described in
Section 5.9. Note that also the subroutine CODE (see Section 4) for the
interpretation of the code may indicate the endpoint of the ray (see
Sections 5.4a, b(i)-b(iii)). Similarly, the subroutine for the transforma-
tion at an interface (Section 5.9) may indicate the endpoint of the ray
(see Sections 5.4b(iv), b(v), ¢). After transformation, the computation of
the ray continues as described in Section 5.8, until the endpoint of the
computed element of the ray is reached.

To start complete ray tracing at the initial point of a ray, the quantities
Y(1),..., Y(NY), YY(1),...,YY(5), IY(D),...,1Y(12), QMAT and
PINIT must be specified at the initial point of the ray. The specification
of the above quantities at the initial point of the ray is discussed in
Section 6.

5.8 Complete ray tracing through a complex block

The element of a ray situated inside a complex block ICB1 is computed
by means of numerical integration of the system of 27 ordinary
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differential equations (5.2)-(5.4) and (5.6) for /=1 and (5.9). The
standard subroutines HPCG or RKGS from the IBM Scientific
Subroutine Package may be used for the integration. In HPCG the
solution of ordinary differential equations is evaluated by means of
Hamming’s modified predictor—corrector method, which is a fourth-order
method. RKGS uses the Runge—Kutta method (also a fourth-order
method). Routine HPCG needs two evaluations of the right-hand sides
of differential equations per step of the integration, but its starting takes
approximately 18 additional evaluations. Routine RKGS needs 11
evaluations of right-hand sides of differential equations per two steps of
the integration. Thus HPCG should be usually more effective than
RKGS, but for short elements of a ray (up to four steps of numerical
integration) RKGS may be more effective.

The numerical computation of the element of a ray situated inside a
complex block is organized by a routine called RAYCB here (see Section
5.8.1).

Thze right-hand sides of the ordinary differential equations are eval-
uated by SUBROUTINE FCT(X, Y, D) (see Section 5.8.2).

The necessary tests and auxiliary computations performed after each
successful step of numerical integration are carried out in
SUBROUTINE OUTP(X,Y,D,IHLF, NDIM, PRMT) (see Section
5.8.3).

5.8.1 A short description of complete ray tracing through one
block

The subroutine RAYCB transfers the quantities given at the initial point
of the element of a ray into the corresponding quantities at the endpoint
of the element.

The quantities are Y(1), ..., Y(NY), described in Section 5.2.1, and
the auxiliary quantities YY(1), ..., YY(5), IY(1),...,IY(12), described
in Section 5.2.2. The auxiliary quantities 1Y(2) = KODIND and IY(3) =
ICBO are not required by the routine RAYCB, the quantities IY(6) =
ISRF, IY(7) =ISB2 and IY(8) = ICB2 are only output parameters.

The endpoint of the element is the next point of intersection of the ray
with a boundary of the computational volume, with a boundary of the
complex block ICB1, or with an end surface (see Section 5.4). The index
of the crossed surface is stored in I'Y(6) = ISRF. If the interface between
two complex blocks is crossed then the indices of the simple and complex
blocks situated on the other side of the interface are stored in
IY(7) =1SB2 and IY(8) = ICB2.
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The quantities Y(1), ..., Y(27) are computed by

SUBROUTINE HPCG (PRMT, Y, DERY, NDIM, IHLF, FCT, OUTP, AUX)
REAL PRMT(5), Y(NDIM), DERY(NDIM), AUX(16, NDIM)
INTEGER NDIM, IHLF

or by

SUBROUTINE RKGS (PRMT, Y, DERY, NDIM, [HLF, FCT, OUTP, AUX)
REAL PRMT(5), Y(NDIM), DERY(NDIM), AUX(8, NDIM)
INTEGER NDIM, IHLF

respectively, FCT and OUTP being external subroutines in both cases.

The meaning of individual parameters is described in detail in the IBM
Scientific Subroutine Package, we shall not repeat it here. We shall only
give the specification of these parameters in our case of complete ray
tracing.

The right-hand sides of the ordinary differential equations are evalu-
ated by the subroutine FCT. The routine OUTP, called by HPCG (or
RKGS) after every successful step, looks for the endpoint of the
computed element, controls the phase shift of the reduced amplitudes
Y(28),...,Y(NY) due to caustics, and stores the computed quantities
inside the complex block in proper files. The communication among the
subroutines RAYCB, FCT and OUTP is performed by the local common
block /RAYC/.

Structure and function of the routine RAYCB

(a) The input auxiliary quantities (see Section 5.2.2) are stored in the
common block /RAYC/.

(b) The interval of the independent variable § for the numerical
integration extends from PRMT(1) = YY(1) to a sufficiently large
value (e.g. PRMT(2) = PRMT(1) + 999 999). The initial increment
of the independent variable is PRMT(3) = Ao = STEP (see Sec-
tion 5.6). The upper error bound is PRMT(4) = 13.444 X
UEBRAY for HPCG or PRMT(4) = UEBRAY for RKGS. The
parameter PRMT(5) controls the termination of numerical in-
tegration and need not be specified. Error weights may be selected
for example as follows:

for real and imaginary parts of a complex-valued travel time

DERY(1)=1, DERY(2)=1;
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for coordinates
12 172
DERY(3) = (GlTl) s DERY(4) = (62—2) ,

1/2
pERY(s (@),

for covariant components of the slowness vector
DERY(6) — (G11)1/2 AOUI_NEXPS,
DERY(7) —_ (G22)1/2 Ao ,Ul—NEXPS’
DERY(8) = (G*)2 Ag y!~NEXPS,
for other computed quantities
DERY()=0 forI=9,...,27.

The velocity v of the corresponding type of wave and the
components G’ and Gj; of the metric tensor are taken at the point
where the numerical integration starts, they represent approxim-
ately the values of the velocity and the metric tensor along the
computed part of the ray. Note that only approximate values of
these quantities are needed at this place; they control only the
error weights, not the actual computations.

(c) The routine HPCG (or RKGS) is called.

(d) The value of the independent variable at the endpoint of the
computed element of the ray is copied from the common block
/RAYC/ to the variable YY(1). If the numerical integration is
interrupted for a great number of bisections of the initial incre-
ment (greater than NHLF, i.e. PRMT(5) <0, see Section 5.8.3j)
then the upper error bound UEBRAY is doubled and the
algorithm continues again from (b).

(e) The auxiliary quantities (see Section 5.2.2) are recalled from the
common block /RAYC/ to proper arrays.

5.8.2 Right-hand sides of the differential equations (subroutine
FCT)

In this section we shall describe the algorithm for evaluating the
right-hand sides of the system of 27 ordinary differential equations for
Y(1),...,Y(27); see (5.2)-(5.4) and (5.6) for J=1 and (5.9). We
assume that the algorithm is realized by the routine FCT, by the
following steps (a)—(g).
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(a) The number IFCT of invocations of FCT (see Section 5.2.2) is
increased by one.

(b) The components GY of the metric tensor and Christoffel symbols
I'% are determined using the routine METRIC (see Section 2.1).
The velocity v, its derivatives dv/dx’ and 8*v/3x' x’, and the loss
factor Q' are determined using the routine VELOC (see Section
3.3.2).

(c) The basis of the ray-centred coordinate system and some related
quantities are determined as follows:
(i) non-unit vectors

(ii) contravariant components

pi —_ Gijp]‘, Hil _ GijIIjl;
(iii) norms
. , iH.
dy=(H'H)",  do=(pp)?  do=t—;
d11d33
(iv) orthonormal vectors
pi a_P
I-Ii =7 H ==,
> ds ds;
Ili ) Hil )
H, =_1_Hi3d13: H'1=_“_H'3d13,
dn du

Hj=(det G*) e HPHY',  H”=G"Hp.

(d) Quantities useful to test the accuracy of computations: for exact
solutions, the norms d,;, dis, dy3 introduced above should be as
follows: di; =1, dss =v~!, d;3=0. The deviations

Ay =|dy -1, Ay =|vdy — 1], Az = |dyl

of the basis of the ray-centred coordinate system from the
orthonormality conditions are stored in the common block
/RAYC/ in order to be accumulated along the whole ray by means
of routine OUTP. The accumulated values are useful to check the
accuracy of the numerical integration.

(e) First and second derivatives of the velocity in the ray-centred
coordinate system:
v

Vi=—H", V, =(
1 ax, AB

v A
2V _ —)H"“H’B.
Sx' 9x/ 7 ox*



126 V. Cerveny et al.

(f) Correction of the computed quantities (i.e. renormalization of the
slowness vector and of the first polarization vector):
Y(i +5)=Hy/v, Y(@i+8)=H,;.
(g) Right-hand sides of the differential equations

dz dr™
a7 _ . _NEXPS — 17)—1, ~NEXPS
=v =30

do ’ do v ’

X _ pi3yl-NEXPS

do v ’

dp; 3

d_P0= (_v—la_;+F§H;3Hk3>U—NEXPs,
dH;,

= (ViHp + vIkHPH )u ~NEXPS,
0 0 v 0
_d_I_Iw_ﬂ= y~1-NEXPS 0 0 0 v
do -Vu -V, 0 0
Vi -V 0 0
Y(12) Y(16) Y(20) Y(24)
Y(13) Y(17) Y1) Y(25)
Y(14) Y(18) Y(22) Y(26)
Y(15) Y(19) Y(23) Y(27)

do

5.8.3 Subroutine OUTP

The routine OUTP is called by HPCG (or RKGS) after any successful
step of the numerical integration. It includes various tests of the position
of the newly computed point of the ray, tests for possible caustic points,
etc. It also stores the computed quantities in proper files if required. The
detailed step-to-step description of the algorithm is as follows.

(a) The values of the independent variable X, dependent variables Y
and their derivatives D, stored one step before in the variable X2
and in arrays Y2(NY), D2(NY), are moved into X1 and into
arrays Y1 and D1. The input values of the parameters X, Y, D of
the subroutine OUTP are copied to X2 and to arrays Y2, D2. The
variable X2 and arrays Y2, D2 are located in the common block
/RAYC/, since their values must be saved until the next invoca-
tion of OUTP.
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At the beginning of the numerical integration (i.e. if the
independent variable X equals PRMT(1)), return to HPCG (or to
RKGS).

(b) The number IY(10)=IOUTP (see Section 5.2.2) of steps of

©

(d

numerical integration of the ray is increased by 1. The index
1Y(6) = ISRF of a surface is set equal to zero.

Check for crossing the coordinate boundaries of the computational
volume. The boundaries are described by seven reals (see Section
5.6). If any one of the seven limits (indexed from 101 to 107) is
exceeded, i.e. if any one of Frivoo =x"—Xxin is less or equal to
zero, or if any one of Fris100=%" —XMax is greater or equal to
zero, or if fi;; =T — Tmax IS greater or equal to zero, then: the
index ISREF is set equal to the relevant index from 101 to 107 and
the point of intersection is sought. The point of intersection is
situated on the ray Q between X1, Y1 and X, Y. The independent
variable X and dependent variables Y are replaced by the values at
the point of intersection. The point of intersection may be found
by means of the procedure described in Section 5.8.4. Note that
the gradients of the functions fiq, . - . , fio7 are as follows:

afzkf99= af2k+.100_ {1 fork=1,2,3,j=k,

ox’ ox’ 0 fork=1,2,3,j%k,
Sfror
G

Check for crossing the boundary of the complex block. The indices
of the simple and complex blocks in which the point X, Y is
situated may be obtained by invocation of the subroutine BLOCK
(see Section 3.3.1). If the ray has not left the complex block
IY(5) =ICB1 (i.e. if the index of the complex block is equal to
ICB1) then the value of 1Y(4) = ISB1 is replaced by the index of
the current simple block. Otherwise (if the ray has left the complex
block ICB1), the point of intersection of the ray with the boundary
of the complex block ICB1 must be found as follows.

(d;) The independent variable X is copied to an auxiliary
variable XAUX and the coordinates Y(3),...,Y(5) are
copied to an auxiliary array YAUX.

(d;) IY(6) =ISREF is set equal to the index of the surface that
separates the point X, Y from the simple block ISB1.
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(d;) The point X, Y of intersection of the ray with the surface
ISRF is found by means of the procedure described in
Section 5.8.4. The subroutine BLOCK is called to find the
simple and complex blocks IY(7) = ISB2 and 1Y(8) = ICB2
touching at the point X, Y of intersection the simple block
ISB1 from the other side of the surface ISRF. Then there
are three possibilities.

(i) The point X, Y of intersection is separated from the
simple block ISB1 by a surface bounding ISB1. This
means that the point X, Y is not situated at the
boundary of the simple block ISB1. The algorithm
must be repeated starting from (d,).

(ii) Otherwise, if the neighbouring complex block ICB2
is equal to ICB1, the point X, Y is situated at the
boundary between two simple blocks, but not at the
boundary of the complex block ICB1. The value
ISB1 must be replaced by ISB2 and the subroutine
BLOCK must be called to find the new surface ISRF
separating the point XAUX, YAUX from the
simple block ISB1. The algorithm must be repeated
starting from (d;). Note that the point of intersec-
tion will be situated between X1, Y1 and X=
XAUX, Y =YAUX.

(iii)) Otherwise, the point X, Y of intersection is success-
fully found.

Check for crossing the end surfaces. All surfaces on which complete
ray tracing should be terminated and that are different from the
surfaces 1,..., NSRFC covering structural interfaces must be
checked for crossing. If the point X, Y is situated on the other side
from an end surface than the initial point of the ray, then
IY(6) = ISREF is set equal to the index of the surface and the point
of intersection is found. The values at the point are stored in
variable X and array Y.

Phase shift due to caustics. The matrix Q%5 of geometrical

spreading is dependent on the matrix QNJT of geometrical

spreading and its derivative P5a" at the initial point of the ray (see

Sections 5.1.3 and 5.2.3): INIT - INIT
11 1

[Qﬁ Qﬁ]z[ﬂn I, Il Hm] nroonRT
0% 0% I, I, I, IL,l| PY"™ pPH"

11 12
INIT INIT
P21 P22
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The matrices Q5n" and PSa' are stored in the array YI (see
Section 6.1). We denote

[Q}1 Q}2]=[Y1(12) Y1(16) Y1(20) Y1(24)]
oL 0Ll Lyi13) vi17) Y1) Y1(25)
YI(12) YI(16)

YI(13) YI(17)

YI(14) YI(18) |’
YI(15) YI(19)

the matrix of geometrical spreading at the point X1, Y1. Similarly
we denote

[ 2 §2]=[Y(12) Y(16) Y(20) Y(24)]
0% 0% Y(13) Y(17) Y(@21) Y(25)
YI(12) YI(16)
YI(13) YI(17)
YI(14) YI(18) |’
YI(15) YI(19)

the matrix of geometrical spreading at the point X, Y.
If
det @' det @*< 0,

where det @' = 01,03, — 01,04 and det @* = 0},0%, — 01,03,
then there is a caustic point of first order (line caustic) between the
points X1, Y1 and X, Y. Then the reduced amplitudes
Y(28), ..., Y(NY) must be multiplied by —i, and 1Y(12) = KMAH
is increased by one.

Otherwise, if

(Q110% — 0105 + 0101 — 01:0%) det @' <0
then there is a caustic point of second order (point caustic)
between points X1, Y1 and X, Y. Then the reduced amplitudes

Y(28), ..., Y(NY) must change their signs, and 1Y(12) = KMAH
is increased by two.

(g) Storage of the computed quantities at given surfaces. The loop over
all surfaces specified for storage of the computed quantities, and
different from the surfaces 1,...,NSRFC covering interfaces,
must be performed. If a surface is identical with the surface ISRF
on which the endpoint X, Y of the element is situated then the
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quantities at this point are stored in the corresponding file (see
Section 5.5.2). Otherwise, if the point X, Y is situated on the other
side from the surface from the point X1, Y1 then the point of
intersection of the ray with the surface is found and the independ-
ent variable and the dependent variables at the point are tem-
porarily stored in the auxiliary variable XAUX and auxiliary array
YAUX. The reduced amplitudes YAUX(28),..., YAUX(NY)
are obtained from the amplitudes Y(28), ..., Y(NY) by adding
the phase shift due to the caustics between the points X, Y and
XAUX, YAUX. The phase shift may be determined in the same
way as described in (f). We must remember, however, that the
point XAUX, YAUX is situated against the direction of propaga-
tion from the point X, Y. Then a factor i must be used instead of
—iin (f).

Storage of computed quantities along the ray. The quantities are
stored along the ray with the given step STORE (see Section 5.6h)
in the independent variable if STORE #0. We denote

k,=int (X1/STORE)+1,  k,=int (X/STORE).

The quantities are stored at the points given by the following
values of the independent variable:

XAUX =k XSTORE (k=ki, ..., k).

For k;>k, the data are not stored. The dependent variables
YAUX(1), ..., YAUX(27) at the point XAUX may be obtained
by interpolation from the points X1, Y1 and X2, Y2. The
interpolation method is described in Section 5.8.4. The reduced
amplitudes YAUX(28), . .., YAUX(NY) may be obtained in the
same way as in (g).

Accumulation of the renormalization errors for a test of accuracy.
The quantities As3, A;3 and Ay, (see Section 5.8.2d), stored in the
common block /RAYC/, are multiplied by 4(X — X1)v NEXPS and
are added to the quantities YY(3) = ERRPP, YY(4) = ERRPH,
YY(5) =ERRHH (see Section 5.2.2), temporarily stored in the
common block /RAYC/.

Large number of bisections of the initial step. If the number IHLF
of bisections is greater than the given limit NHLF then the
numerical integration is interrupted by setting PRMT(5) negative
(numerical integration is interrupted for PRMT(5) non-zero).
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(k) Final operations. The value X of the independent variable is stored
in the common block /RAYC/. If ISRF+#0 (i.e. the endpoint of
the element of the ray is reached) then the numerical integration is
terminated by setting PRMT(5) positive.

5.8.4 Auxiliary procedures

In the routine OUTP it is necessary to perform the interpolation of
certain quantities along the ray, and to find the points of intersection of
the ray with certain given surfaces. The algorithms for the solution of
these two problems are described in this section.

(a) Interpolation along the ray

The part of the ray between two consequent points obtained by
numerical integration may be interpolated by a third-order method using
the functional values and their first derivatives at the two points. We
denote by x;, yi, y1 (x2, y,, y2) the independent variable, the dependent
variables and their derivatives in the first (second) of the two given
points. We introduce four functions of the independent variable x:

a,(x) = [2a(x) + 3]a(x)a(x),
ay(x) =1—ay(x),
bi(x) = [a(x) + 1]a(x)(x — x2),
by(x) =[a(x) + 1]a(x)(x — x,),
where
a(x) = (x — x2)/(x2 — xy).

They have the following properties:

afxy) ai(xz) ai(x) ailxz) 1 000
a)(x1) ax(xz) ax(x;) ax(xy) 0100
bi(x1) bilxz) bi(x) bi(xy) 0010Ff
ba(x1)  by(xy) ba(x1) bi(xy) 0 001

Here the functions
ay(x) =6[a(x) + 1a(x)/(x; — x,),
ax(x) = —ai(x),
bi(x) = [3a(x) + 2]a(x),
ba(x) = [3a(x) + 1][a(x) + 1],
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are the first derivatives of the functions a,(x), a,(x), b,(x) and b,(x). The
values of the dependent variables and their derivatives at x are then
determined by

y=aiytay,+byi+byys
y' =ai(y1—y2) +biyi+ by

(b) The search for the intersection of the ray with a given surface

The search for the point of intersection of a ray parametrized by an
independent variable X with a surface f(x') =0 is started if

fE'(XA))f (x'(XB)) <0

for two points XA, XB of the ray. The point of intersection must be
situated between XA and XB.

The ray is interpolated between its two last points obtained by
numerical integration using the third-order method described in (a). The
function f(x’) is evaluated by means of the subroutine SRFC2 if the index
ISRF of the surface is less than 100. For ISRF>100 the functions
fior» - - - » figy are used.

The point of intersection can be found iteratively by a combined
two-point method. The regula falsi method is used in each odd iteration,
the Newton—-Raphson method in each even iteration. Since the Newton-
Raphson method need not converge, it is replaced by the method of
bisections in the case of emergency. The last approximation of X is taken
for a new XB. That one of the old XA, XB at which the function f(x’)
has the opposite sign to f(x‘(X)) is taken for a new XA. The iterations
are terminated if the new interval (XA, XB) of the independent variable
is sufficiently small:

|XA — XB| <ERR,
with
ERR = UEB v ~NEXPS

where v is the velocity of propagation of the corresponding type of wave.
The regula falsi iteration (odd iteration) is as follows:

X =(FA x XB — FB x XA)/(FA — FB),
where
FA = f(x'(XA)), FB = f(x'(XB)).

The modified Newton—~Raphson iteration (even iteration) is as follows.
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We denote
XC= (XA +XB)/2,
XCA = XA —FA/DA + (ERR/50) sign (XA — XB),
XCB = XB - FB/DB + (ERR/50) sign (XA — XB),
where
k
pa=T (xan 2 xa),  DB=Z ixm) X (xm).
If XCA and XCB are situated between points XB and XC then
X = {XCA for | XCA - XB| < |XCB — XB|,
XCB for |[XCB — XB| < |XCA - XB|.
If only XCA is situated between XB and XC then
X =XCA.

If only XCB is situated between XB and XC then
X =XCB.
If neither XCA nor XCB is situated between XB and XC then
X=XC.

5.9 Complete ray tracing across a curved interface

The quantities Y(1),...,Y(NY), YY(@),...,YY(5) and IY(1),
...,IY(12) computed along a ray and defined in Section 5.2 must
be transformed at an interface. We denote the quantities Y, YY, IY
(described in Section 5.2) corresponding to the incident wave and the
reflected/transmitted wave at the point of incidence by Y1, YY1, IY1
and Y2, YY2, IY2 respectively. We also denote by KODNEW the new
position in the code, and by ICBNEW)| the index of the complex block in
which the generated wave is to propagate. The sign of ICBNEW specifies
the type of generated wave (+ for P, — for S).

5.9.1 Transformation of auxiliary quantities, travel time and
coordinates

(a) The number of real-valued quantities describing the reduced
amplitudes of the incident wave is NAMPL1 =1Y1(1) —27.
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(b) The number NAMPL2 of real-valued quantltles specifying the
reduced amplitudes of the generated wave is
(by if IY1(5)>0 and ICBNEW<0 then NAMPL2=
2 NAMPLI1;
(by) if IY1(5)<0 and ICBNEW>0 then NAMPL2=
NAMPL1/2;
(bs) otherwise NAMPL2 = NAMPLL1.

(c) The output number of basic quantities is I'Y2(1) =27 + NAMPL2.
(d) The new position in the code'is 1Y2(2) = KODNEW.

{(e) Indices of the simple and complex blocks:
(e,) for reflection (|IY1(5)|=|ICBNEW|): IY2(3)=1Y1(3),
I1Y2(4) =1Y1(4), IY2(5) = ICBNEW;
(e,) for transmission: I1Y2(3) = |IY1(S)|, IY2(4)=1Y1(7),
IY2(5) = ICBNEW.

(£) IY2(6), IY2(7), IY2(8) are undefined.

(g) IY2(9)=1Y1(9), IY2(10)=TIY1(10), IY2(11)=IY1(11)+1,
1Y2(12) = IY1(12).

(h) YY2(I)=YY1() for I=1,...,5.

(i) The real and imaginary parts of the travel time and the coordinates
remain unchanged: Y2(I) =Y1(l) for I=1,...,5.

5.9.2 Metric tensor and velocities

The components G; and G of the metric tensor and the Christoffel
symbols I'% at the point x’=Y1(i +2) are the result of the routine
METRIC (see Section 2.1).

The parameters of the complex block [IY1(5)| for the incident wave are
obtained by invocation of subroutine PARM2. The parameters of the
complex block IY1(8) on the other side of the surface 1Y1(6) are
obtained similarly. The velocities VP1, VS1 in the complex block
[IY1(5)|, and the velocity v of the incident wave and its derivatives are
obtained by invocation of routine VELOC. Similarly, the velocities VP2
and VS2 in the complex block I'Y1(8) are also obtained by invocation of
routine VELOC. In the case of transmission, i.e. if I[CBNEW|=1Y1(8),
the same invocation yields the velocity © of the transmitted wave,
together with its derivatives. In the case of reflection without conversion,
i.e. if ICBNEW =1Y1(5) then the velocity v with its derivatives is equal
to the velocity v of the incident wave with its derivatives. In the case of
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reflection with conversion, i.e. if ICBNEW = —1Y1(5), the routine
VELOC must be called once again to give the velocity ¥ of the reflected
wave and its derivatives.

If the velocity © of the reflected/transmitted wave is equal to zero (i.e.
an S wave in liquid) then the computation of the ray must be terminated.

5.9.3 Transformation of the slowness vector and the polarization
vectors

The polarization vectors (basis vectors of the ray-centred coordinate
system) of the incident wave are given by

H;=p(pG¥p)~"2,
where
pi=Y1(i+5)
is the slowness vector, and by
H;; =Y1(i +8).

We define the basis of the local Cartesian coordinate system at the
surface 1'Y1(6) specified by f(x') = 0. The unit normal to the surface is

Zs=f(KG“fi)™"

Here we denote f; = 9f/9x’, f; = 3f/3x' 3x/. The cosine of the angle of
incidence ¢ (0= o <m) is

cos & = H3G"Z;,
and the sine is
sin @ = (1 — cos® )"
The basis vector in the plane of incidence is
Zyy = (H;3 — Z; cos a)/sin a,

and the basis vector perpendicular to the plane of incidence is
Zi2 = £iijj3Zk1(det Grs)llz,

where Z/, = G'™Z,, are the contravariant components of the basis
vectors, and where (det G,)"? is an output parameter of the routine
METRIC. In the case of normal incidence, i.e. if sin @ =0, the vectors
Z;, and Z;, may be chosen arbitrarily (e.g. Z;; = H;;).

The sine of the angle & of reflection/transmission may be evaluated
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using Snell’s law
N
sin & = —sin a.
v
The cosine is
cos & = +e(1 —sin” &)'?, € =sign(cos a),

where the plus sign is taken for transmission (ICBNEW|= I1Y1(8)) and
the minus sign for reflection ([ICBNEW]| = [IY1(5)I).

The revolution angle wy of the vector Z, with respect to the
polarization vector H; is determined by

cos ¢ = HyZ',/cos a, siny = —H,Z',.

The unit vector perpendicular to the reflected/transmitted ray in the
plane of incidence is

Ei = Z“ COsS & — Z,’3 Sin &.
The unit vector tangent to the reflected/transmitted ray is
113 = Zil sin & + Z,'3 cos &.

We wish the vector H,, to be rotated with respect to the vector Z;
through the same angle y as the vector H;,. Then

Y2(l + 8) = ﬁil = Ei COS ’l/) - Zi2 Sin w.
The slowness vector of the reflected/transmitted ray is

5.9.4 The curvature of the interface and the velocity gradients in
the local Cartesian coordinate system

The second derivatives of the function f(x’) describing the surface I'Y1(6)
in local Cartesian coordinates divided by the norm of the gradient of

f(x") are
Dap=(f; — T)Z'4Z s(£,G™f) "
This equation is obtained by transforming the second covariant deriva-
tives of f(x') into local Cartesian coordinates.
The velocity gradients in local Cartesian coordinates are
_dv,, o0
oo ox’
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5.9.5 Dynamic ray tracing across a curved interface

First the ray-centred coordinate system is rotated through an angle v:
Oup= Wacllep = YicYLU(T + C +4B),
Papg=Wycllcirp= PacY1(9+ C +4B),

where

= [ cos P sin 1/)].

—siny cosy

Then the transformation equations are

Quo = CasC30ca,

Py = Ca3CocPea + CabFpcCibOpan
where

cosa 0 = cosa 0

c=[ 0 1]’ c=[ 0 1]'

The matrix F,p is given by
Fip=(@""cosar— 07" cos @)Dap+ v sina (Esg — E4p),

where

E— [—Vlv“l(l + cos® @) + Vv~ tsin a cos o —Vzv‘l]

-Vou! 0
£ l:—Vlﬁ_l(l + cos®> &) + V;07 ' sin & cos & ——17227_1]
Vot 0

Finally, the ray-centred coordinate system is rotated through an
angle —y
Y2(7 + A + 4ﬂ) = ﬁAﬁ = IIICAQCB’ Y2(9 +A + 4ﬂ) = ﬁA+2,ﬁ = WCAPCﬁ‘

5.9.6 Transformation of reduced amplitudes

In the case of an incident S wave the ray-centred coordinate system is
rotated through an angle y

Re AAi = WAIYI(ZS) + WA2Y1(30), Im AAi = WA1Y1(29) + WA2Y1(31)
for i =1 or 3, and, possibly,
RC AA2 = lIIAIY1(32) + WA2Y1(34), Im AAZ = WA1Y1(33) + WA2Y1(35)
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if there is an S wave at the initial point of the ray. The reduced
amplitudes of the incident P wave are not rotated:

Re A;; =Y1(28), Im A5 = Y1(29)
for i =1 or 3, and, possibly,
Re A32 = Y1(30), Im A32 = Y1(31).

Then the above reduced amplitudes are transformed by one of the
following equations:

p |cos &| 1/Z[Rsv—>sv 0 ][Ali]
pv |cos a| RsuosudLlAyY

5] o)
(pv |cos al)”z[RMV] A
Au- (B

["‘"]
A, pv jcos o
Ay
SV—»P 0][ . ]

AZt

pU |cos &|
pv |cos o

- pU |cos @|
W=\

1/2
Rp_pAs;
pv |cos af|> PP

where i = 1, 2 for the S wave at the initial point of the ray and i =3 for
the P wave at the initial point of the ray.

The reduced amplitudes of generated P waves may be directly stored in
the output array Y2,

Y2(28) =Re Az,  Y2(29)=ImAj
for i =1 or 3, and, for an S wave at the initial point of the ray,
Y2(30)=Re A3,  Y2(31)=ImAs,.

For S waves the ray-centred coordinate system is rotated through an
angle —vy,

Y2(26 + ZA) = qIBA Re A-Bi) Y2(27 + 2A) = lI’BA Im AB[
for i =1 or 3, and, for an S wave at the initial point of the ray,

Y2(30+2A4) = Wp, Re Ap,  Y2(31 +2A) = W, Im Ap,.



I1.1. Complete Ray Tracing in 3D Structures 139

5.9.7 The reflection/transmission coefficients
The R/T coefficients are given by the following expressions:

Reflection coefficients

Rsv—.sv =D '[¢°p’PiP,PsP, + p1p (1S, P, Ps — B1ay P Py)
— a1 B PY? + 0,5, PP X7 — o008, 8, p° 27,
Rp_p= D_l[q2p2P1P2P3P4 + p1p2(B1a2 PP, — o, B, P, Py)

—a B P PY* + a3, P B X — a8, pZ7),
Rsv—.p=—2eB1pP,D'(qPsP,Y + 0,8,XZ),

Rp_,sv = ZEaIpPlD—l(qP3P4Y + (YzﬂzXZ),
Rspasu= D_I(Plﬁlpz — p2BoFy);
Transmission coefficients

Rsvosv =211 P,D ™ (&, Y + &, P, X),
Rp_p=2a,p, D7 '(B,P,X + B, P,Y),
Rsy_.p=2€P1p1 pP,D (PP, — a:B,Z),
Re_.sv=—2¢e0,0,pP,D "' (qP,P; - B, Z),
Rsysu =208, P,D7".

Here

D = q’p*P\P,P;P, + p,1px(B102 P Py + o, B, P, P3)
+ a1f1 PP Y? + 0,8, P B X + a0, 27,
D =p\BiP+ pf, P4,
q=2p:p3—p:BY), X=p.—qp’>, Y=p,+qp?, Z=p,~p,—qp’
P =(1-aip®'?, P=(1-B1p)",
P=(1-a3p)'™, P=(1- Bp)".

The square roots P, are positive imaginary for negative argument, e.g.
Py=i(ajp®*—1)"? for p>1/a,. The quantity p is the ray parameter,
p =sin a/v, where « is the angle of incidence, 0< a <m (see Section
5.9.3), and v is the velocity of the incident wave at the point of incidence.
The quantities a; =VP1, B, =VS1 and p, correspond to the point of
incidence at that side of the interface containing the incident wave;
o, = VP2, B,=VS2 and p, correspond to the other side of the interface
at the same point. The quantity ¢ is given by the relation £ = sign (cos &)
(see Section 5.9.3). For further details see Cerveny (1985a).
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For a liquid-liquid interface we have
' R _ P2 —prai B
P—P =
p202 Py + praoi Py

for reflection, and
20,0 P
P20 P + pra Py

Rp_p=

for transmission.
For reflections from the Earth’s surface we put a, = 8, =p, =0 in the
above expressions.

6 INITIAL POINTS OF RAYS

Let us consider a two-parameter system of rays of a specified elementary
wave. A ray of the elementary wave is specified by its two parameters y'
and y°. The computed rays may start from a single initial point common
to all rays, from an initial surface along which an initial travel time is
defined, from a curve along which an initial travel time is defined, etc.

6.1 Important quantities at the initial point of the ray

At the initial point of the ray, we are interested in particular in the
quantities ICB1 and YL(1),..., YL(6), defined in Section 5.5.4 and
describing the local properties of the model, and in the following
quantities describing the properties of the rays and of the travel-time
field:

YI(1) initial travel time;

YI(2) initial imaginary part of the complex travel
time;

YI(3),...,YI(5) coordinates of the initial point of the ray;

YI(6), . .., YI(8) covariant components of the initial slow-

ness vector;

YI(9),...,YI(11) covariant components of the first basis
vector of the ray-centred coordinate system
at the initial point of the ray (perpendicular
to the slowness vector YI(6), . . ., YI(8));



I1.1. Complete Ray Tracing in 3D Structures 141

YI(12) YI(16 the elements of the matrix QX of geometri-
(12) YI( g
YI(13) YI(17) cal spreading, and the matrix PR, at the
YI(14) YI(18) initial point of the ray, see (5.13);

YI(15) YI(19)

INIT INIT

Q 11 Q 12
INIT INIT
21 22

INIT INIT |°
P 11 P 12

INIT INIT
P 21 P 22

YI(20) = #', YI(21) = #* take-off parameters of the computed ray.

In addition to the above quantities describing the properties defined for
a single ray, there are also quantities describing the properties of the
discrete system of computed rays in the vicinity of the computed ray. Of
these quantities, we are interested in particular in the following:

YI(22) area I' of element &I of the ray-parameter
surface, corresponding to the ray,
r={ dy'dy% 6.1)
or

YI(23), YI(24), YI(25) components I3;, I,, I3, of the symmetric
matrix I'x; inverse to the specific moment

rv’= F“f (7' =¥ )7 —v)dy'dy?
sr
(6.2)
of the element O8I of the ray-parameter

surface, evaluated with respect to the ray.
Here y’ are the ray parameters.

The quantities ICB1, YL(1),...,YL(6) and YI(1),..., YI(21) cor-
responding to the initial point of the ray, together with the quantities

YI(22), ..., YI(25), are required in processing the results of complete
ray tracing; they must be stored in some file. The quantities
YI(22), ..., YI(25) are not generally known during complete ray tracing;

they can be determined after it. Thus they cannot be stored when the
results of complete ray tracing are stored, but must be stored after the
complete tracing of the ray has been finished. For these reasons, the
quantities YI(22), ..., YI(25) should be stored in another file than that
where the results of the complete ray tracing are stored. It seems
reasonable to store all the quantities ICB1. YL(1)..... YL(6) and
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YI(1), . . . , YI(25) corresponding to the initial points of rays in a separate
file.

The index ISB1 of the simple block containing the initial point of the
ray, and abovementioned quantities ICB1, YL(1),..., YL(6),
YI(1),...,YI(21) defined at the initial point of the ray, may be
necessary or useful during the complete tracing of the ray. For this
reason, they should be stored in a common block.

6.2 Initial values for complete ray tracing

The initial values of the basic quantities Y(1),...,Y(NY), where
NY =27 + NAMPL, computed along a ray and defined in Section 5.2.1,
are Y(I)=YI{) forl=1,...,11;
Y(12) Y(16) Y(20) Y(24) 1 000
Y(13) Y(17) Y1) Y(25) 010 0}
Y(14) Y(18) Y(22) Y(26) 0010/
Y(15) Y(19) Y(23) Y(27) 0 001
and
(a) for a P wave at the initial point of the ray

NAMPL =2,
Y(28)=1, Y(29)=0;
(b) for an S wave at the initial point of the ray
NAMPL =8,
Y(28)=1, Y(29)=0,
Y(30)=0, Y(31)=0,
Y(32)=0, Y(33)=0,
Y(34)=1, Y(35)=0.
The initial values of the auxiliary quantities defined in Section 5.2.2 are
YY(1)=0;
YY(2)=UEB,
which is the value specified in the input data (see Section 5.6);
YY(3)=0, YY(4)=0, YY(5)=0;
IY(1) =27+ NAMPL,
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where NAMPL is given above;
1Y(2) =0, IY(3) =0;
IY(4) =1SB1,

where ISB1 is the index of the simple block in which the initial point of
the ray is situated;

IY(5) = ICBI,

where ICB1 is the index of the complex block in which the initial point of
the ray is situated, together with sign + for a P wave and — for an S
wave;

IY(6) undefined (e.g. IY(6)=0);

IY(7) undefined (e.g. IY(7)=0);

IY(8) undefined (e.g. IY(8)=0);
IY(9)=0, IY(10)=0, IY(11)=0, IY(12)=0.

7 APPLICATIONS AND PROCESSING OF THE RESULTS OF
COMPLETE RAY TRACING

Using the complete ray-tracing procedure described here, we determine
and store various quantities of great seismological importance along the
ray and at intersections of the ray with some selected surfaces. Moreover,
additional routines can be used to modify and/or considerably generalize
the initial conditions used in the procedure and to process the results. In
this way, the complete ray-tracing procedure can be used as a basic
procedure in many program packages dealing with high-frequency seismic
body waves propagating in complex 3D laterally varying layered and
block structures. In this section we shall briefly describe several such
possibilities. We believe that complete ray tracing will find many other
important seismological applications, in addition to those listed in this
section, in the near future.

We denote here the computed ray by £, the initial point of the ray by
0y, and another point of the ray & by 0,. We shall also consider a point §
situated close to the point 0,, and a point 0 close to Oy (see Fig. 7). The
general coordinates of these points are denoted by x'(0p), x'(0,), x'(S)
and x°(0) respectively. The coordinates of the initial point 0, are specified
in the initial conditions, see YI(3),..., YI(5) in Section 6.1, and the
coordinates of the point 0, are obtained by the complete ray tracing, see
Y(@3),...,Y(5) in Section 5.2.1.
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Ray

o+ 4

Fig. 7

7.1 Travel time. Imaginary travel time

We denote the initial travel time by 7, = 7(0,), and the initial imaginary
travel time (i.e. the imaginary part of the complex-valued travel time) by
1™(0,). They are specified by YI(1) and YI(2) in the initial conditions
(see Section 6.1). By complete ray tracing we obtain t(0;), the arrival
time of the wave under consideration at 0, and v™(0,), the imaginary
part of the complex-valued arrival time, see Y(1) and Y(2) in Section
5.2.1. We introduce the travel time 7(0,, 0p) and the imaginary travel
time 7™(0,, 0,) from 0, to 0, along €2 by the relations

T(Os, 00) = T(Os) - 1(00), }
TIM(OS’ 00) = %t*(os) 00) = TIM(O:) - TIM(OO)'

Instead of T™(0,, 0,), we shall also use 3r*(0;, 0p), and call ¢* the
“t-star”. The importance of the travel time 7(0;, 0y) is obvious; the
quantity ¢* plays an important role in the evaluation of the amplitudes of
waves propagating in dissipative media (see Section 7.18).

(7.1)

7.2 Slowness vector. First partial derivatives of the travel-time
field

At the initial point 0, the covariant components of the slowness vector
pi(0,) are given by YI(6), ..., YI(8) (see Section 6.1). At 0, they are
obtained by complete ray tracing, see Y(6), . . ., Y(8) in Section 5.2.1. In
both cases they represent the first partial derivatives of the travel-time
field with respect to the general coordinates x*:
_ ar(P)] _[a‘r(P)]
ro=[52] . a@=[%0] o 02

s
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Thus p;(0y) can be used in the hypocentre location procedures, as —p;(0o)
represent the partial derivatives of the travel time 7(0,, 0p) with respect
to the coordinates of the source 0p. Equations (7.2) can be also used in
the calculation of the paraxial travel times (see Section 7.10).

From the covariant components p,;(0p) and p;(0,), we can easily obtain
the contravariant components using the relations

p'(0p) = Gik(oo)Pk(Oo): p'0,) = Gik(os)Pk(Os)- (7.3)

7.3 Vector basis of the ray-centred coordinate system

The basis vectors of the ray-centred coordinate system e, e,, es= ¢ (also
called the polarization vectors) are easily evaluated from the quantities
obtained by complete ray tracing.

The unit vector ¢ is tangent to the ray, so it is immediately obtained
from the slowness vector:

tf’(Oo) = U(OO)P{(OO)’ ti.(Os) = U(Os)Pi_(Os); } (7.4)
£(00) = v(0)p'(00),  £'(0,) =v(0,)p'(0y). '

The triplet e, e,, e;=¢ is mutually perpendicular at any point of the
ray. The initial unit vectors e,(0p) and e,(0,) satisfying this property may
be chosen arbitrarily.

We denote by H}(0p) the ith covariant component of the initial
polarization vector ¢;(0,), and, similarly, by H}(0,) the ith covariant
component of the polarization vector ¢;(0,). We assume that the vector
HY is perpendicular to the wavefront. In this section we shall call the
following choice of initial polarization vectors the intrinsic choice:

H }J'J(Oo) = Hij(Oo): (7-5)
where
H;3(00) = £:(0o),
H;1(00) = YI(i + 8), (7.6)

H(0p) = £ijijm(00)Hm3(00)Gkn (00)H,,1(0p)[det G™ (00)] ™2

The intrinsic choice of polarization vectors is implicitly used in the
procedure of complete ray tracing proposed here. Any general choice
HY(0o) of the initial polarization vectors e;(0,) will be called here the
user’s choice. Of course, the matrix H,'.;J(OO) must be specified by the user;
we assume here that it is known.

At the point 0, the covariant components H;(0,) of the polarization
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vectors ¢;(0;) are given by the relation

H(0,) = Hy(05) H i (06)G™ (00) H1,(00), (7.7)
where
H;5(0,) = ,(0;),
H;(0,) = Y(i +8), (7.8)

H,(0,) = Sijijm (Os)HmS(Os)Gk”(OS)Hnl(Os)[det G” (05)1—1/2_

Let us conclude that for any user’s choice of the initial polarization
vectors at 0, we can evaluate the polarization vectors at 0, using
Y(6), . .., Y(11) and the above equations.

For the intrinsic choice (7.5) of initial polarization vectors, (7.7)
simplifies to

Note that the quantities Hj; represent the elements of the 3x3
transformation matrix from the user’s ray-centred to the general coordin-
ate system. Similarly, H; represent the elements of the 3 X 3 transforma-
tion matrix from the intrinsic ray-centred to the general coordinate
system.

The 3 X 3 transformation matrix A" from the intrinsic ray-centred to
the user’s ray-centred coordinate system,

H}il = Hg](OO) Gmn (Oo)an (00), (7. 10)

is constant along the ray.

7.4 Ray propagator matrix

The elements of the 4 X 4 propagator matrix II(0,, 0,) at 0, are stored in
Y(12),...,Y(27) (see Section 5.2.1). Remember that II(0,, 0p) =1,
where Iis the 4 X 4 identity matrix (see Section 6.2). The ray propagator
matrix is expressed in the intrinsic ray-centred coordinates.

We introduce the 2 X2 real-valued matrices Q,(0,, 0p), Q@Q,(0;, 0p),
P,(0,, 0p) and Py(0,, Op) by the relation

al(os) 00) 02(05’ 00)]
Pl(os’ 00) PZ(OS) 00) .

Here Q,(0;, 0y) and P(0,, Op) are the matrix solutions of the dynamic
ray-tracing system (5.15), with the telescopic (plane-wavefront) initial

(0;, ) = [ (7.11)
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conditions at 0p. Similarly, @,(0,, 0) and Py(0,, Oy) correspond to the
point-source initial conditions at 0.
Note that the inverse of the ray propagator matrix is given by

Pg(os) 00) —a;(os) 00)
—P'lr(os, 00) a’lr(Os) 00)
which follows from (5.11). Thus, using the results of complete ray tracing

from 0, to 0,, we can also determine the inverse ray propagator matrix
from 0, to Qq.

(0, 0,) = M'(0;, 0p) = [ ] (7.12)

75 Matrix of geometrical spreading Q

The 2 X 2 matrix of geometrical spreading
Oan= [Qq—A-] (7.13)
- 3y?l—g2-0
represents the transformation matrix from ray coordinates (v', ¥°) to the
user’s ray-centred coordinates (g', ¢%). The general relation for the

matrix of geometrical spreading at the point 0, is
Q(0,) = HV'{Q,(0;, 0)(HY")TQ(0o) + Qx(0;, 0)(H)P(00)}.  (7.14)

The transformation matrix P from the ray coordinates to the user’s
ray-centred components of the slowness vector is defined in Section 7.6.

Equation (7.14) is valid for any system of rays containing the ray £2 and
for any parametrization of the rays, not only for the initial conditions and
the ray parametrization specified before the complete ray tracing of the
ray £ (see Section 6). For this reason, we use here the notation Q instead
of @®, see (5.13). Note that the change from the parameters y* to the
parameters 7 (for a fixed system of rays) represents the multiplication of
both left- and right-hand sides of (7.14) by a constant 2 X 2 matrix

ay”
Cip=7—%- 7.15
AB 3')73 ( )
Considering the system of rays and its parametrization specified for the
complete tracing of the ray £ (see Section 6), we can evaluate the matrix
of geometrical spreading at the initial point of the ray in the user’s
ray-centred coordinates as

Q(0,) = HU'Q™T, (7.16)
where the components of the 2 X 2 matrix @™ are stored in YI(12),
YI(13), YI(16), YI(17). Similarly,

P(OO) — HUIPINIT, (717)
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where P™'T s stored in YI(14), YI(15), YI(18), YI(19) (see Section 6.1).
Then (7.14) reads

a(0,) = H{Q,(0,, 0,)@™"" + @,(0, 0,)P™"}. (7.18)

7.6 Transformation matrix P

The 2 X 2 matrix P with components

SPE?’]
Pup= [—
a8 aYB q',q?=0

represents the transformation matrix from ray coordinates (y?, ¥?) to the
user’s ray-centred components p{? = 3t/3q", p§? = 31/34¢° of the slow-
ness vector. The general relation for the matrix P is

P(0,) = HP{P,(0,, 05)(H™)T@(0p) + P(0,, 0o)(H")TP(0p)}. (7.19)

The discussion of this equation and the meaning of the individual
quantities is similar to those in Section 7.5.

For the system of rays and its parametrization specified for complete
ray tracing along the ray 2, Q(0,) = HV'Q™™, P(0,) = HV'P™T (see
Section 7.5), (7.19) yields

P(0,) = HY{P,(0,, 0,)@™ + P,(0,, 09)P™T}. (7.20)

7.7 Geometrical spreading

By the geometrical spreading J(0,), we understand here the quantity
J(0,) = |det Q(0,)|- (7.21a)

The geometrical spreading can be evaluated if the matrix of geometrical
spreading @ is known. The geometrical spreading does not depend on the
initial orientation of the polarization vectors e;(0y) and e,(0,).

For a point source at 0y, (7.21a) yields

J(0,) = |det @,(0,, 0p)| |det P(0y)]. (7.21b)

The geometrical spreading is of great importance in the evaluation of
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ray amplitudes: the ray amplitudes are inversely proportional to the
square root of geometrical spreading.

7.8 Matrix of second derivatives of the travel-time field

The elements of the 2 X2 matrix M of the second derivatives of the
travel-time field with respect to the user’s ray-centred coordinates
(g%, 4%, Myx=1[8%t/3q’ 8q%),;1—42-0, can be evaluated by M=PQ!
both at the initial point 0y and at 0,. Using (7.14) and (7.19), we obtain
the continuation formula for M as

M(Os) = HUI{PI(O.N 00) + PZ(OS) 00)(HUI)TM(OO)HUI}
X {@4(0,, Op) + @5(0,, 0)(HY)TM(0)HV"} ' (H)'.  (7.22)
Let us now consider a local Cartesian coordinate system (y', y*, y°) at
0,, with y'=¢', y?=¢> and with y> being the length coordinate
measured along the tangent to the ray €2 at 0,. Then the 3 X 3 matrix
M(0,), with elements M;; = [5°t/3y’ 3y’],,, is given by
M;(0,)  Myx(0,) -Vv?
M©,)=| M0,) Mx(0) -Vov° |, (7.23)
—‘/11]_2 _‘/ZU—Z _‘/31)—2
where
_

V.=
J .axm

is the velocity gradient in the local Cartesian coordinates y' at 0;.
Finally, we introduce the 3 X 3 matrix N(0,), with elements N;(0,) =
[8%t/8x’ 3x'),, given by

]ij (0,) = I{jm (Os )Hkn (Os )an (Os) + I‘;k(os )ps (Os) (7 25)

G™H,, (7.24)

7.9 Curvature of the wavefront

The 2 X2 matrix of the curvature of the wavefront K in the user’s
ray-centred coordinate system can be simply evaluated from the 2 X2
matrix M using the relation

K=uvM=vPQ™". (7.26)
Thus we have
K(0o) =v(0)M(0p),  K(0,) = v(0,)M(0;).
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Similarly, the 2 X 2 matrix of the radii of curvature R is given by
R=K'=v''M'=v'QP". (7.27)

Using K (or R), we can determine the main geometrical characteristics of
the wavefront (the principal curvatures, the principal directions, the
wavefront ellipse or the wavefront hyperbola, etc.). For details see
Cerveny and P3entik (1983b).

7.10 Paraxial travel times

By the paraxial travel times, we understand the travel times in the
vicinity of the central ray Q.
Let us consider a single initial point at 0, and denote

x*(S, 0,) =x*(S) —x*(0,),  x*(0, 0p) = x*(0) — x*(0,). (7.28)

Then the results of complete ray tracing from 0, to O, can be used to find
not only the travel time from 0, to 0,, but also approximate expressions
for the travel time from 0, to S or even for the travel time from 0 to S if S
is close to 0, and 0 is close to Oy:

(S, 05) = 7(0s, 0) + pe(0,)x*(S, 0,) + 1x™(S, 0,)x"(S, 0,)Nyun(0;, Oo).
(7.29)

Similarly, we obtain (see Cerveny et al., 1984)
(S, 0) = 7(0,, 0g) +x“(S, 0,)p«(0,) — x*(0, 0)p<(0o)
+3x™(S, 0,)Npnn(0;, 06)x"(S, 0y)
— 3x™(0, 06) N (0o, 05)x™ (0, Oo)
— (0, 06)Hy7(00)[Q5 (05, 00)xcHie (0,)x*(S, 0,).  (7.30)

In (7.29) and (7.30) N;,.(0,, 0) (respectively N,,,(0o, 0;)) are elements of
the 3 x 3 matrix N(0,, 0) (respectively N(0p, 0,)) of the second deriva-
tives of the travel time field with respect to the general coordinates x’ at
the point O, (respectively 0p) due to a point source at 0, (respectively 0,).
They are given by (7.25) and (7.23), where M,k are replaced by

M(0,, 05) = Py(0;, 06)(Q5(0;, 0p)) ™" (7.31a)
(respectively
M(OOJ Os) = —(02(05! 00))—101(()3; 00) (731b))

Equations (7.29) and (7.30) are, of course, only approximate; they are
valid for small x’(S, 0,) and x*(0, 0p).
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7.11 Paraxial rays

Paraxial rays are rays situated close to the central ray . If the ray
propagator matrix is known along £ then the paraxial rays can be
approximately evaluated analytically.

Let us first consider the simplest problem of initial-value paraxial ray
tracing. We assume that the initial point 0 of the paraxial ray is situated
in a plane perpendicular to £ at 0, and denote its user’s ray-centred
coordinates by (¢'(0), ¢°(0)). Similarly, we assume that the point S is
situated in the plane perpendicular to € at 0, and denote its user’s
ray-centred coordinates by (q'(S), g°(S)). We denote the user’s ray-
centred components of the slowness vector at 0 by p{?(0) and p$”(0),
and those at S by p{?(S) and p$?(S). We also denote

W(00) =[g'©0) ¢*(0) p(©) pPO)]",
wQo,) =[q'(S) q%(S) p(S) pgq)(S)]T.} (7.32)

Then the dynamic ray-tracing system yields the following analytical
solution for the initial conditions given by W(0,):

W(0,) = UII(0,, 0,) UTW(0,), (7.33)
where U is the 4 X 4 matrix given by
HY" o
U= < 0 HU'>' (7.34)

Thus we determine the user’s ray-centred coordinates of the point §
situated on the paraxial ray by simple matrix multiplication. In addition,
we obtain also the user’s ray-centred components of the slowness vector
at S.

Let us now consider a more complex situation: the initial point 0 of the
paraxial ray is not, in general, situated in the plane perpendicular to £2 at
0y, but it is close to 0,. Moreover, its position is specified in the general
coordinates x°(0). The initial slowness vector p(0) is specified by its
covariant components p;(0) in the general coordinate system. We assume
that both x’(0) and p;(0) are selected in such a way that the whole
paraxial ray is situated close to the central ray €2. We wish to determine
the analytic equation for the paraxial ray in the vicinity of the point 0;.
We denote a point situated on the paraxial ray close to 0; by S, and
x'(S, 0,) = x’(S) — x’(0,). Then we obtain the following parametric equa-
tion for x‘(S, 0,):

xi(sx Os) = Gik(os)Hkn(Os)qn(S)’ (735)
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where ¢ is a (small) free parameter, and ¢'(S) and ¢*(S) are given by

‘IK(S ) = (Q2(0s, 00)) k. Hp...(06)G™ (0o)
X {pn(o) _pn(OO) - Nnj(OO) Os)xj(o’ 00)} (736)

The parametric equation (7.35) with (7.36) represents a straight-line
approximation of the paraxial ray in the vicinity of the point 0,. All the
symbols in (7.36) have the same meaning as in (7.30) in Section 7.10.

It is simple to see that the point S is situated in the plane perpendicular
to 2 at 0, for g°> =0. For ¢>> 0 it is shifted “behind” this plane, and for
q> <0 “in front of”’ the plane.

7.12 Two-point ray tracing for paraxial rays

Assume that we know the position of the points 0 and § and we wish to
find the ray that passes through these two points. This is the classical
two-point ray-tracing problem. For paraxial rays this problem can be
solved analytically. This means that we can find analytically approximate
expressions for the slowness vector p(0) and/or p(S). The slowness
vector determines the initial direction of the ray.

We again denote the general coordinates of S and 0 by x'(S) and x*(0)
and use the notation (7.28). Differentiating (7.30), we obtain

p;(0) = p;(00) + Ny(0o, 0,)x*(0, 05)

+ Hx(06)(Q3(0;, 00)) k2 H1nr.(0,)x™ (S, 0Oy),
pi(S) = p;(0,) + Ny(0,, 0p)x“(S, 0,)

+ Hix(0,)(Q2(0;, 00)) xcHmr(00)x™ (0, Op).

All the symbols in (7.37) have the same meanings as in Section 7.10.

The solution (7.37) of the two-point ray-tracing problem is only
approximate. The accuracy is, of course, higher for paraxial rays situated
closer to the central ray £2. The solution, however, can be repeated
iteratively. An iterative loop in which the initial slowness vector at 0 is
changed at each step can be used to find the ray that passes through the
point S with the required accuracy.

(7.37)

7.13 Fresnel volumes

Fresnel volumes represent some vicinity of the central ray Q that actually
influences the wavefield at the receiver point 0,. The Fresnel volumes are
sometimes called the “physical rays” (see Kravtsov and Orlov, 1980). Let
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us again assume that a point source is situated at 0, and the receiver at 0,.
Then the Fresnel volume is composed of points C for which the following
condition holds:

|T(C, 00) + T(Os: C) - T(Os, 00)' < %T (738)

Here T is the period of the harmonic wave under consideration.

The Fresnel volume can be simply computed approximately by some
algebraic manipulation with the propagator matrices. Let us consider a
point O situated on the ray £ between 0y and 0,. Any point F in the
vicinity of the point O is situated in the Fresnel volume if and only if

|[x"(F) — x/(0£)1Hjg (OF) [Maen(OF, 0o)
— Maw(Or, 09)1Hew(0)[x*“(F) — x*(0p)]I < T.  (7.39)
Here the matrices
M(0F, 0o) = P(OF, 06)(Q2(0F, 0p)) (7.402)
and
M(0r, 0,) = [—Pi(0F, 00)@3(0;, 0) + P5(0r, 06)QT(0,, 0o)]
X [—Q1(0F, 00)Q7(0;, 0p) + Q2(0F, 09)QT(0;, 0p)] ", (7.40b)
are composed of the 2 X 2 submatrices of the ray propagator matrices
Q,(07, 0g)  Q>(0f, 00)]
P.(0r, 0))  P>(0r; 0o)

and II(0,, 0p) (see (7.11)). Both the matrices II(0f, 0p) and I(0,, Op)
are obtained by complete ray tracing along € from 0, to 0,, passing
through Op.

Equation (7.39) can be modified in many ways. Similar equations can
be found for a point O situated at a curved interface 2. The intersection
of the Fresnel volume with X will usually be represented by an ellipse.
Only the part of the interface inside the ellipse will influence the
wavefield at O, considerably.

(0, 0p) = [ (7.41)

7.14 Phase shift due to caustics. KMAH index

To evaluate the complex-valued amplitude of the displacement vector of
the seismic body wave under consideration, it is necessary to take into
account the phase shift due to caustics. In the algorithm for complete
ray tracing proposed here the amplitudes are automatically modified by
the relevant phase shift at any caustic point (see Section 5.8.3f). It may,
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however, still be of some interest to know the complete phase shift
87(0,, 0y) due to caustic points along £ between 0, and 0,. The phase
shift 87(0;, 0,) can be expressed in terms of the index k(0,, 0,) of the ray
trajectory €2 between 0, and 0, by

61"(0.;1 00) = - %nk(os’ 00) (742)

The index of the ray trajectory k(0;, 0p), also known as the KMAH index,
is defined as the sum of the caustic points along & between 0, and 0;;
caustic points of second order (point caustics) being considered twice in
this sum. We recall that det @® =0, Q®+#0 at a caustic point of first
order (simple caustic), and that @R = 0 at a caustic point of second order
(point caustic). Here @R is the matrix of geometrical spreading Q
corresponding to the initial conditions (7.16) and (7.17). In the proposed
procedure the KMAH index is stored in IY(12).

Note that the phase shift due to caustics is the only quantity evaluated
in complete ray tracing that depends on the initial matrices @™'" and
P™IT (see Section 5.8.3f).

The existence, position, type and number of caustic points, and
consequently the KMAH index, are changed if @™ and P™T are
changed.

7.15 Ray amplitudes

In the algorithm for complete ray tracing the vectorial complex-valued
reduced amplitudes A;(0,) given by (5.19) are evaluated at 0;. They are
expressed in the ray-centred coordinate system at 0;. For convenience,
the 3 X 3 matrix A(0,) is considered in this section. The element A,(0,)
represents the ray-centred component in the direction of ;(0,) of the
vectorial complex-valued reduced amplitude at O; corresponding to the
unit initial vectorial complex-valued reduced amplitude at 0, polarized in
the direction of e;(0y) (intrinsic choice). The non-zero quantities
Re (A;(0,)) and Im (A;(0,)) are stored in Y(28),...,Y(27+ NAMPL),
where NAMPL =2, 4 or 8, depending on the type of the wave at 0, and
0, (see Section 5.2.1).

The matrix A; is constructed from the stored quantities
Y(28), ..., Y(NY), with NY = NAMPL + 27, in the following way:

(a) P wave at the initial point of the ray 0,, P wave at the point 0,
(NAMPL = 2):
00 0

=10 0 0 ;
0 0 Y(28)+iY(29)

A

i
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(b) P wave at the initial point of the ray 0p, S wave at the point 0;

(NAMPL = 4): .
0 0 Y(28)+iY(29)
A;=|0 0 Y(30)+iY(31) |;
00 0
(c) S wave at the initial point of the ray Oy, P wave at the point 0
(NAMPL = 4):
0 0

Y(28) +iY(29) Y(30)+iY(31) 0

(d) S wave at the initial point of the ray 0,, S wave at the point 0;
(NAMPL = 8):

Y(28) +iY(29) Y(32)+iY(33) 0
Y(30) +iY(31) Y(34)+iY(35) 0
0 0 0

We denote by U/(0,) the contravariant components of the non-reduced
complex-valued ray amplitude in the local recording coordinate system "
at 0,. If the local recording coordinate system z™ is Cartesian then we
need not distinguish between covariant and contravariant components of
the ray amplitudes. The local recording coordinate system may, of
course, coincide with the general coordinate system, the user’s ray-
centred coordinate system, etc. We shall specify the local recording
coordinate system z” in terms of the 3 X 3 transformation matrix:

Aij

) oz . x/
Z/©0,) = W ©y), Z(0,)= P (0y). (7.43)

Likewise, we introduce the contravariant components Uf_(Oo) of the ray
amplitude with respect to the local coordinate system z’ at the initial
point 0, of the ray, and the relevant transformation matrix:

axk ) 8z
Zk(0) = 37 00), ZJ(0p) = e (o) (7.44)

The local coordinates at the initial point 0, and the local recording
coordinates at O; need not be of the same type.

The complex-valued vectorial ray amplitude (including the phase shift
due to caustics) at 0, is given by

v(00)p(0o)

2(0)p(0 )] (J(0,))”"2C7(0;, Op)a™ (0o), (7.45)

)=
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where
C'n(05, 00) = Z/(0,)G " (0,) Hpnis (0,) A (05, 00)H,,(06)Z°, (o),  (7.46)
a"(0p) = lim {(J (0))*U"(0)}. (7.47)

The path for the evaluation of the limit is along the ray, against the
direction of propagation. The geometrical spreading J = |det Q| is defined
in Section 7.7.

For a point source at 0y, (7.45) can be simplified. We can write

(J(0,))~2a"(0p) = |det Q5(0;, 0p)|~*v(05)g"(0p), (7.48)
where
8" (0p) = (}Ln(}o {(@°(0) — ¢°(00))U"(0)} (7.49)

is the radiation pattern of the point source. The path for the evaluation of
the limit is the same as in the case of (7.47). Thus, for a point source at
0,, we can write

v(00)p(0o)
v(0,)p(0;)

The radiation pattern g"(0,) is, of course, a function of the ray
parameters y' and y*: g" =g" (0o, ¥', ¥%).

00, = v (o) | et @00, 0012000, 008700, (750

7.16 Paraxial ray approximation for the ray amplitudes

Owing to the curvature of the wavefront, the direction of the slowness
vector changes in the neighbourhood of the ray Q. As the displacement
vector is parallel to the slowness vector for P waves, and perpendicular to
it for S waves, the vectorial complex-valued amplitudes also vary in the
vicinity of €. Let us consider a point S close to 0,. Then we can write
approximately

U/(S) = Z/(S)G*"(0,)H,nn(0,) B, (S, 0.)H,, (0,)Z°0,)U'(0;).  (7.51)

Here B,.(S, 0,) are elements of the 3 X 3 paraxial approximation matrix
B(S, 0,). This matrix can be evaluated from the quantities obtained by
the complete ray tracing. It is given by
1 0 04(S, 0,)
B(S,0,) = 0 1 0,(S, 0,) |. (7.52)
—0,(5,0,) —6,5,0) 1
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Here 6,(S, 0,) are components of a 3 X 1 column matrix 0(s, 0,):
ei(S: Os) = U(Os)Hki(Os)le(Os)Mn(Os)xn(s’ Os), (753)

where N,,(0,) is given by (7.25). Equation (7.52) may also be written in
the form

Bij(s’ Os) = 61‘]‘ + U(Os)[Hki(Os)éjB - ij(O.\')6i3]le(0s)IVln(0:)xn(S’ Os)
(7.54)

7.17 Amplitudes at structural interfaces or on the Earth’s
surface

If the point O, is situated at the structural interface then the above
expressions for the ray amplitudes must be modified. Together with the
incident wave, there are also two reflected waves (reflected P, reflected
S) and two transmitted waves (transmitted P, transmitted S). Thus, to
compute the amplitudes at 0, not only the quantities corresponding to
the incident wave, but also those corresponding to the two reflected
waves or two transmitted waves, must be stored.

Such a possibility is considered in the algorithm for complete ray
tracing proposed here (see Section 5.5.4).

Let us assume that the quantities corresponding to the incident,
reflected P and reflected S waves are stored at the point 0,. We denote
the quantities corresponding to the incident wave, to the reflected P wave
and to the reflected S wave at 0, by the superscripts IW, RP and RS
respectively. We now denote by U™(0,), O®*(0,) and ORS(0,) the 3x 1
column matrices of the components of the ray amplitudes at 0, expressed
in local recording or general coordinates, corresponding to the three
waves under consideration. Then we can write

0(0,) = 0™(0,) + O%*(0,) + O®5(0,). (7.55)
On the opposite side of the interface,
0(0,) = 0™(0,) + 0™(0,), (7.56)

where TP and TS correspond to the transmitted P and S waves.

If the point O, is situated on the Earth’s surface then it is also possible
to use, instead of (7.55), standard conversion coefficients (see Cerveny et
al., 1977). Such a possiblility is also optionally considered in the
proposed algorithm (see Section 5.5.4). Equations (7.55) or (7.56) are,
however, fully general and applicable at any interface, not only on the
Earth’s surface.
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7.18 Ray amplitudes in slightly dissipative media

The quantities computed by complete ray tracing can be used to evaluate
the amplitudes of seismic body waves in slightly dissipative media, for
both causal and non-causal absorption. For simplicity, we shall only work
here in the frequency domain.

In slightly dissipative media we can consider a complex-valued velocity
ve with a small imaginary part, which is formally assumed to be of order
™! for w— = (the so-called Debye procedure). The imaginary part of
the velocity is not considered in the evaluation of rays and geometrical
spreading and in the computation of the reflection/transmission
coefficients, but it leads to an amplitude decay factor,

Ad(OS)=exp[—wfosIm( ! )ds], (7.57)

0o ve(s)

where the integral is taken along the ray £ from 0, to 0;.

The amplitude decay factor A4(0,) can be simply evaluated analytically
for non-causal and various types of causal absorption if the quantity
t*=2Y(2) is known. This quantity, however, is evaluated by complete
ray tracing. For non-causal absorption the amplitude decay factor is

Aq4(0,) = exp (—mft*). (7.58)

Similar equations for the amplitude decay factor for various causal
absorption models (Futterman, Miiller) can be found in Cerveny (1985a).

7.19 Displacement vector

In a perfectly elastic medium the contravariant components w/(0,) of the
displacement vector #(0,) at the point 0, are given by

W(0,, w) = U'(0,) exp [iwz(0,, 0p)] (7.59)
in the frequency domain, and by
W (0y, £) = Re {UF(0,)6¥(t — 7(0,, 00))} (7.60)

in the time domain. Here w is the circular frequency, U’(0;) are given by
(7.45) or (7.50), and ©(0,, 0p) by (7.1). The function 6™(&) is the
analytic unit impulse corresponding to the Dirac delta function
8(E):0™(E) = 6(E) —i/nE. The time factor exp(—iwt) in (7.59) is
omitted. The time dependence at 0, in (7.60) is assumed here to be of the
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form 6(t). The Fourier transform is assumed here to be of the form

o0

. 1 . .
w (0, t)= EReI uw'(0;, w)e " dw,
0

i (7.61)
W(,, o) = f W(0,, e dt.

Both expressions (7.59) and (7.60) can be simply modified to include
effects of slightly dissipative media. For a non-causal absorption, this can
be done using a complex-valued travel time 7(0;, 0p) + ir* instead of the
real-valued travel time 7(0,, 0p). The function §“(&) in (7.60) is then
given by the relation

5®(E) = ~ = 1m (i) —iRe (—1—) (7.62)
ng 413 013

Let us now consider a real-valued source-time function f(f) with a

Fourier spectrum F(w). Then, instead of (7.59) and (7.60), we obtain

w/(0,, w) = F(w)U'(0;) exp [iwT(0;, 00)], (7.63)
W(0,, 1) = f(1) +Re {U(0,)06™(r — 7(0,, 0p))}
=Re {f®(t) « U(0,)6(t — 7(0,, 00))}. (7.64)

For absorbing media 8(&) is replaced by Im (1/n&). In (7.64), f™(r)
denotes the complex-valued analytical signal corresponding to the real-
valued function f(¢):

FA() = % fo " F(o)e do = £(2) +ig(2), (7.65)

where g(¢) is the Hilbert transform of the function f(¢).

Expressions (7.59), (7.60), (7.63) and (7.64) correspond to the selected
elementary wave propagating along the ray € from 0, to 0,. In the time
domain these expressions describe the so-called elementary synthetic
seismograms.

7.20 Ray-synthetic body-wave seismograms

Until now, we have considered only one elementary wave specified by an
appropriate alphanumeric code, and its ray passing through 0,. In a
layered medium, however, there may be many body waves that travel
from the point source 0, or from the initial surface X to the point 0, along
various ray trajectories . They correspond to various reflected, re-
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fracted, multiply reflected, converted and other seismic body waves.
Moreover, even a single elementary wave may travel to 0, along different
ray trajectories (so-called multiple rays). Thus for the complete high-
frequency seismic body wavefield &’ at 0, we can write the following ray

expansion: ) )
#(0,) =2 w(0,), (7.66)
()
where the summation runs over all rays Q starting from 0, or from the
initial surface X and passing through 0,. The contributions #/(0,)
correspond to individual rays and are given by the equations of the
previous section.

In a laterally varying layered structure the number of rays €2 arriving at
0, may be infinite so that only a partial-ray expansion is actually possible.
This, of course, introduces some errors into the ray computations.

In the frequency domain we can write

@(0,, w) = F(w) X, U/(0,) exp [iwT(0;, 0p)]- (7.67)
(£2)

Here U’(0,) and 7(0,, 0;) correspond to the previously derived and
discussed expressions. Equation (7.67) represents the synthetic frequency
response for F(w)=1. The so-called FFR (fast frequency response)
algorithm can be used to evaluate the synthetic frequency response very
efficiently (see Cerveny, 1985c).

In the time domain the HF synthetic body-wave seismogram is
obtained by the Fourier transform of (7.67) (see (7.61)):

(0, 1) = i Re[ ' (0,, w)e " dw. (7.68a)
(1]

Alternatively, we can write for the HF synthetic body-wave seismogram
the expression

@ (0,, ) = f(t) « Re >, U/(0,)6“V(¢t — 7(0;, 0p))
(£2)
=Re {f(A)(t) « > UI(0,)8(t — 7(0,, 00))}. (7.68b)
()

Both of these expressions can be used even for complex-valued 7(0;, 05)
(dissipative media). 6““)(&) is then given by (7.62); (&) should be
interpreted as Im (1/n&). The sum Y (q). .. in the second expression of
(7.68b) represents the complex-valued synthetic impulse response.

For more details on ray-synthetic seismograms see the review by
Cerveny (1985c).
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7.21 Ray-theory elastodynamic Green function

We define the elastodynamic Green function G™,(0;, ¢; 0y, t) as follows:
G™,(0;, t; 0q, to) is the mth contravariant component of the displacement
vector in the local recording coordinate system at 0, at time ¢, due to the
application of a single-force unit impulse in the direction of the nth axis of
the local initial coordinate system at 0, and time f,. We can write
approximately

G™.(0,, t; 09, to) = >, G™,(0;, t; 0p, to). (7.69)
()

Here G™, are the contributions corresponding to rays £ of individual
elementary waves (including multiple arrivals).

To determine G™,, we use (7.50) and specify the radiation pattern
g'(0,) for the single force oriented along the nth axis of the local initial
coordinate system. We obtain (see Kennett, 1983),

; (47p(06)v*(0p))™! forj=n,
i(0,) =
g0 {o for j #n.
In the time domain this yields

Gmn(Os) L 00: tO) = A(Os’ 00) Re {Cmn(OSJ 00)6(A)(t —t— T(Os, 00))}1
(7.70)
where

A(0y, o) = 4_1::' [v(00)0(00)v (0,)p(0;) Idet @x(0,, )] ™% (7.71)

In the frequency domain we have
G™,(0,, 0y, w) = A(0,, 05)C™ (05, 0p) exp (iwz(0;, 0p)), (7.72)
where G™,(0,, 0o, @) denotes the Fourier spectrum of G™,(0,, ¢; 0o, 0).

7.22 Moment-tensor point source

Using the Green function, we can easily write expressions for point
sources of more general types in 3D laterally varying layered block
structures. Let us denote the contravariant components of the moment
tensor by M*(t). Then the contravariant components &"(0;, t) of the
displacement vector at 0, are given by

i"(0s, 1) = MY(t) « >, G™(0;, t; 0g, 0)p;(0p). (7.73)
(2)
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Here MY(t) denotes the time derivatives of the moment tensor and p;(0p)
are covariant components of the slowness vector at the source point 0.
This equation can be rewritten in many alternative forms; one of which is

a(0,, f) = Re {(M*‘f(t))<A> 3 A(0,, 0p)
(K2)

X C(0,, 00p/0)8(t — 1o = 70, 0)) ).~ (7.74)

Here (MY(t))® denotes the analytical signal corresponding to the time
derivative of M(t), A(0,, Op) is given by (7.71) and C"(0,, 0p) by (7.46).

The ray method can only be used to compute the high-frequency part
of the seismic wavefield. Thus the resulting seismograms must be
high-pass filtered to exclude the low-frequency contributions if such
contributions are included in the source-time function.

7.23 Particle-motion diagrams

As the local recording coordinate system z” at (, can be chosen arbitrarily
by the user, complete ray tracing offers the possibility of determining and
plotting particle-motion diagrams in an arbitrary plane passing through
0,. The particle-motion diagrams of the complete wavefield may, in
general, be rather complicated, mainly in various interference regions of
two or more elementary waves, even in the ray approximation. The
particle-motion diagrams considerably simplify for individual elementary
waves if they are separated from other waves. For simplicity, let us
consider harmonic waves, and a point 0, situated inside the medium.
When the wave arrives at O; as a P wave it is linearly polarized at that
point. When the wave arrives at 0, as an S wave its polarization is more
complicated: as a rule, the S wave is elliptically polarized. The elliptical
polarization may be caused by radiation patterns of the source and by
overcritical reflections at interfaces. If the point 0, is situated at an
interface then the polarization may be elliptical for both the incident P
and S waves, as both waves may impinge at the interface overcritically.
Finally, at the Earth’s surface, the polarization remains linear for the
incident P wave (the P wave always impinges subcritically at the surface).
The S wave, however, very often impinges overcritically at the Earth’s
surface. In this case its polarization is elliptical at 0, even if the incident S
wave is polarized linearly.
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7.24 Gaussian beams and Gaussian packets

Expressions for the displacement vector (7.63) and (7.64) are high-
frequency solutions of the elastodynamic equation even if the real-valued
solutions @, P and M of the dynamic ray-tracing system are replaced by
complex-valued solutions of that system. For positive-definite Im M such
a solution represents a Gaussian beam concentrated near the ray Q. The
amplitude profile of the Gaussian beam in the plane perpendicular to the
ray £ is Gaussian, with its maximum on the ray . The matrix
L= (3o Im M)~'? represents the matrix of the halfwidth of the Gaussian
beam.

If the matrices Re M(0,) and Im M(0Q,) (or L(0p)) are given at the
initial point 0, of the ray €2, the matrices Re M(0,), Im M(0,) (and L(0;))
can be simply determined at any point 0, of the ray €2, using the results of
complete ray tracing (particularly the ray propagator matrix IT(0;, 0p))
and (7.22).

Similarly, if Q(0,) and P(0,) are given then Re @Q(0,) and
Im Q(0,) may be determined by means of the propagator matrix
I1(0,, 0p) and (7.14). To apply (7.63) and (7.64) to the computation of
Gaussian beams, the geometrical spreading |det Q(0,)|""* must be
replaced by [det @(0,)] "% and the phase shift due to caustics must be
removed from the amplitude factor. As the KMAH index is known, the
phase shift due to caustics can be removed simply. The sign of
[det @(0,)]” 2, however, is not determined by complete ray tracing. Thus
we can use complete ray tracing to obtain the final expressions for the
displacement vector of the single Gaussian beam concentrated near £2 at
0,, except for the sign. If the phase shift due to caustics is not removed
then the ambiguous multiplicative factor is i” (=0, 1,2,...).

In some applications of Gaussian beams—for example in the computa-
tion of the wavefield by the summation of Gaussian beams—the
ambiguous multiplicative factor need not be known, it is cancelled by
other factors in the summation formulae. Thus complete ray tracing is
quite suitable for determining the Gaussian-beam contributions for the
summation procedures.

As for Gaussian beams, the results of complete ray tracing can be used
to compute the Gaussian packets (also called “quasiphotons’; see Babich
and Ulin, 1981) concentrated near points along €, again except for the
abovementioned ambiguous multiplicative factor. The amplitudes of the
Gaussian packet concentrated near a point 0, of the ray £ decay
exponentially with the square of the distance from 0;, not only in the
direction perpendicular to £, but in all directions.

If the results of complete ray tracing are stored in a sufficiently dense
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system of points along £ between 0, and 0, then the ambiguity factor can
be removed, as [det @]? must vary continuously and smoothly along Q
in the case of Gaussian beams, even through caustic points.

For more details regarding Gaussian beams and Gaussian packets see
the reviews by Cerveny (1985a,b) and references cited therein.

7.25 Summation of Gaussian beams or Gaussian packets

A time-harmonic high-frequency seismic body wavefield can be ap-
proximately expressed by a summation of Gaussian beams. For each
elementary wave composing the wavefield, a sufficiently dense two-
parameter system of rays is evaluated by the standard complete ray
tracing. The wavefield can be expanded into a two-parameter system of
Gaussian beams concentrated near individual rays. The final wavefield at
any receiving point is then obtained by summation of all beams passing in
some vicinity of the receiver. The Gaussian beams far from the receiver
need not be considered in the summation owing to the finite width of the
beam. For details and for the expansion formulae see Klime§ (1984a,
1986) and Cerveny (1985a).

In a similar way, the wavefield can be asymptotically expressed by
summation of a three-parameter system of Gaussian packets. For each
ray of the abovementioned two-parameter system of rays, a system of
Gaussian packets concentrated near regularly distributed points along the
ray is constructed. The summation is over all Gaussian packets influenc-
ing the wavefield at the receiver. As in the case of Gaussian beams, the
Gaussian packets concentrated near points far from the receiver need not
be considered. For details see Klime¥ (1984b).

In the summation formulae, infinitely broad Gaussian beams (paraxial
ray approximations) can be used instead of Gaussian beams of finite
width. In this way, the Maslov method (see Chapman and Drummond,
1982; Klimes, 1984b; Thompson and Chapman, 1985) may be obtained.

In 2D computations it is not necessary to evaluate a two-parameter
system of rays—a one-parameter system of rays is sufficient. Two-
dimensional (ribbon) Gaussian beams must, however, be used in the
summation formulae. See Cerveny and P3entik (1983a) and Cerveny
(1985a).

A similar simplified procedure based on the summation of Gaussian
beams can be used even in 3D media if we are interested in the wavefield
only along a specified profile (generally curvilinear). In such a case the
tracing of only those rays that approximately follow the profile is
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sufficient. The take-off parameters of these rays form a curve in the 2D
set of ray parameters y' and y% Such a computation is called the profile
mode computation here.

In this case the quantity YI(22) = I' (see (6.1)) must be replaced by the
arclength of that part of the abovementioned curve in the ray-parameter
surface that corresponds to the ray under consideration. The matrix Ik,
(see (6.2)) is then singular, with one zero eigenvalue. The eigenvector
corresponding to the non-zero eigenvalue is tangential to the curve in the
ray-parameter surface; the other one is perpendicular to the curve.
However, the algorithm for complete ray tracing remains the same.

Profile-mode computation in 3D media is numerically very efficient; it
is only slightly more time-consuming than standard 2D computations. It
may be used in the numerical modelling of high-frequency seismic
wavefields in various source—receiver configurations: for surface profiles
(in deep seismic sounding of the lithosphere, etc.), for borehole profiles
(vertical seismic profiling), for borehole-to-borehole computations, in
normal ray section computations, etc.

7.26 Integrals of the ray propagator matrix along the ray

Some integrals of the type

By = f " E(0)p(0, o) do (7.75)

oo

or
Baﬁ =I Hva(ax OO)EWS(O)H‘W(O’ 00) dO, (776)

where the quadrature is performed along the ray £ and o is defined by

(5.1), are important in perturbation theory (Farra and Madariaga, 1987)

and in optimization of the shape of Gaussian beams and packets (Klimes,

1985). Here the weighting functions F, (o) and F,s(0) along the ray may

be dependent on the velocities and their derivatives and/or on the

velocity perturbations. o = g, denotes the initial point of the ray €.
There are two ways of evaluating the integrals.

(a) The numerical quadratures may be substituted directly into the
complete ray-tracing algorithm. This approach has two disadvan-
tages: (i) the complete ray-tracing algorithm is more complicated;



166 V. éerveni et al.

(ii) the integrals are only evaluated for the previously specified
weighting functions and the weighting functions cannot be changed
without repeating the complete ray-tracing computations.
(b) The results of complete ray tracing are stored along the ray €2 with
the step STORE (see Section 5.5.1) of the independent variable o.
Then the integrals may be computed later by means of another
program. This approach has two disadvantages: (i) since the
quantities are stored with a given step of an independent variable,
the points of intersection of the ray with the interfaces must also
be stored in a file and taken into account; (ii) since the weighting
functions are usually dependent on the velocity distribution, the
routine computing the velocity and its derivatives must be called
again for each stored point of the ray if some unstored derivatives
of velocity are required.
The matrix B,g defined above is often ill-conditioned, even in the case
of a well-conditioned positive-definite weighting matrix F,z(0). For this
reason, it is recommended that rather than directly evaluating the matrix

B,p, with
o Bll 812]
B= [ ) 7.77
B21 B22 ( )
one should evaluate the matrix (Klime§, 1985)

c11 c12] [Bll - 81282_21821 812]
C= [ = . 7.78
c21 c22 BZl B22 ( )
The differential equations
d -
do C., = [ (0, 0o) — ITx(o, 00)C%' Cu]*
X F(0)[,(0, 0o) — I)(0, 00)C'Cy1),
d
e C., = IT;(0, 00)F(0)Iy(0, 0), (7.79)
d
d_O C.= H’lr(o" UO)F(U)H2(01 00);
d
& 022 = H;(O’, Uo)F(O)Hz(U, 00)
for the 2 X 2 submatrices of C follow directly from (7.76). Here
Q,(o, 00)] [02(0; 00)]
II,(o, 0p) = [ R II(o, 0y) = .
O TIPS S A A PP

In (7.79), o is again the variable along the ray €2 defined by (5.1).
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7.27 Other applications

In principle, complete ray tracing can be effectively used in any sort of
numerical modelling of high-frequency seismic wavefields in complex 2D
and 3D structures, including the computation of the high-frequency
seismic wavefield generated by finite sources (Cerveny et al., 1987), the
solution of various diffraction problems, the investigation of the effects of
local geological conditions on surface motion, and the evaluation of
Kirchhoff integrals, as well as those applications mentioned above.
Similarly, complete ray tracing is sure to find applications in the solution
of inverse seismic problems, both kinematic and dynamic. For example,
Klime$ (1987) applied complete ray tracing and the Gaussian-packet
approach in an algorithm for the kinematic location of hypocentres in
general 3D models.

The number of applications of complete ray tracing is growing rapidly,
and complete ray tracing is bound to play an important role in many
other problems of seismological importance.
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